
PT* 25/26 - DM 6 - à rendre le mardi 6 janvier (au maximum)

Préambule de la Partie 1

1. Étudier la convergence des intégrales∫ +∞

0

dt

t4 + 1
et

∫ +∞

0

t2

t4 + 1
dt.

2. Énoncer le théorème de changement de variable pour les intégrales généralisées.
3. Comparer (sans les calculer) ∫ +∞

0

t2

t4 + 1
dt et

∫ +∞

0

dt

t4 + 1
.

(On pourra utiliser le changement de variable x = 1
t .)

Partie I

1. Déterminer le domaine de définition Dh de la fonction h définie par

h(t) =
2t−

√
2

t2 + 1−
√
2t

2. Soit X un réel positif. Calculer ∫ X

0
h(t) dt

puis, à l’aide de ce résultat, ∫ X

0
h(−t) dt.

3. Que vaut

lim
X→+∞

∫ X

0

(
h(t) + h(−t)

)
dt ?

4. Déterminer une primitive sur R de la fonction φ définie par

φ(t) =
2

2
(
t− 1√

2

)2
+ 1

.

5. On considère la fonction g définie par

g(t) =

√
2

t2 + 1−
√
2t

Montrer que Dg = Dh, puis déterminer une primitive G de g sur Dg.
6. Utiliser la primitive précédente pour calculer simplement, pour tout réel positif X,∫ X

0
g(−t) dt.

7. Déterminer

lim
X→+∞

∫ X

0

(
g(t) + g(−t)

)
dt.

8. Calculer, pour tout réel t ≥ 0,
h(t) + h(−t) + g(t) + g(−t).
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9. (a) Que vaut ∫ +∞

0

t2

t4 + 1
dt ?

(b) Déduire des questions précédentes et du Préambule la valeur de∫ +∞

0

dt

t4 + 1
.

10. Calculer ∫ 1/
√
2

0

t2

t4 + 1
dt.

On donnera la réponse en fonction de arctan(2) et ln(5).
11. On considère la série entière

+∞∑
n=0

(−1)nx4n.

(a) Déterminer son rayon de convergence R′ et exprimer sa somme D(x) pour x ∈]−R′,R′[.
(b) Montrer que ∫ 1/

√
2

0

dx

1 + x4

peut s’exprimer comme la somme d’une série numérique.
(c) Que vaut

1√
2

+∞∑
n=0

(−1)n

4n.(4n+ 1)
.

Partie II (complétement indépendant du reste)

On considère la série entière
∑
⩾0
bn.x

2n+1 où bn =
4n.(n!)2

(2n+ 1)!
x2n+1.

1. Vérifier que ∀ n⩾0, (2n+ 3)bn+1 − 2(n+ 1)bn = 0.

2. Déterminer le rayon de convergence de cette série entière

3. On note S la fonction somme de cette série entière.

Justifier que S vérifie sur ]− 1,+ 1[ le problème de Cauchy suivant

{
(1− x2)y′ − xy = 1

y(0) = 0

4. Après avoir résolu cette équation différentielle, en déduire l’expression explicite de S sur ]− 1,+ 1[

5. On suppose dans cette question que
∑
bn est une série convergente.

En considérant S(1) et en rappelant avec précision le théorème utilisé, aboutir à une contradiction.
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Préambule de la Partie 1

1. • La fonction f1 : t 7→
1

t4 + 1
est continue sur [0,+∞[.

On a f(t) ∼
+∞

1

t4
et la fonction t 7→ 1

t4
est intégrable en ∞,

donc par comparaison, f1 est intégrable sur [0,+∞[

• La fonction f2 : t 7→
t2

t4 + 1
est continue sur [0,+∞[.

On a f(t) ∼
+∞

1

t2
et la fonction t 7→ 1

t2
est intégrable en ∞,

donc par comparaison, f2 est intégrable sur [0,+∞[

2. • Dans l’idéal, c’est le théorème 17 ou 18 à reproduire intégralement sur votre copie!
• Sinon, il était judicieux d’au moins mentionné les termes C1, strictement monotone et

bijectif

3. Le changement de variable u =
1

t
= φ(t) est C1, strictement décroissant sur ]0,+∞[ et réalise une

bijection de ]0,+∞[ sur ]0,+∞[.

On a donc ici (avec dx =
−dt
t2

soit dt =
−dx
x2

)

∫ ∞

0

dt

t4 + 1
= −

∫ 0

+∞

−dx
x2

1

x4
+ 1

=

∫ ∞

0

x2dx

1 + x4

On trouve que les deux intégrales sont égales

Partie I

1. h(t) est définie lorsque son dénominateur est non nul.
Or ∆ = (−

√
2)2 − 4 = −2 < 0 et donc le dénominateur ne s’annule jamais!

Conclusion : Dh = R

2. Soit X ⩾ 0 ∫ X

0
h(t)dt =

[
ln |t2 + 1−

√
2.t|
]X
0

= ln(X2 + 1−
√
2.X)

(car le dénominateur t2 + 1−
√
2.t > 0 d’après 1 )

On calcule la deuxième intégrale à l’aide du changement de variable C1, θ = −t (et donc dθ = −dt)∫ X

0
h(−t)dt = −

∫ −X

0
h(θ).dθ = − ln(X2 + 1 +

√
2.X)

rem: on pouvait aussi faire un calcul direct
3. On a pour X ⩾ 0 et par linéarité de l’intégrale∫ X

0
h(t) + h(−t)dt = ln(X2 + 1−

√
2.X)−− ln(X2 + 1 +

√
2.X)

= ln
X2 + 1−

√
2.X

X2 + 1 +
√
2.X

= ln
1 + 1/X2 −

√
2/X

1 + 1/X2 +
√
2/X
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Sous cette forme, il est clair que lim
X→+∞

∫ X

0
h(t) + h(−t)dt = 0 car la fonction ln est continue en 1

4. Notons ψ une primitive de φ sur R.

ψ(t) =

∫ t

φ(u)du

=

∫ t 2

(
√
2(u− 1/

√
2))2 + 1

du

=

∫ √
2.t−1

√
2

w2 + 1
dw on pose w =

√
2u− 1 (dw =

√
2.du)

=
√
2. arctan(

√
2.t− 1) + Cste

Une primitive cherchée est par exemple t 7→
√
2. arctan(

√
2.t− 1)

rem : je rappelle que
∫
φ(t)dt N’est PAS une notation au programme

5. • Le discriminant du dénominateur ayant toujours ∆ = −2 < 0, on en déduit que Dg = Dh = R
• En développant φ(t), on trouve

φ(t) =
1

t2 −
√
2.t+ 1

et donc g(t) =
√
2.φ(t)

Une primitive G de g sur R est donc G : t 7→ 2. arctan(
√
2.t− 1)

6. En procédant comme en Q2 avec le même changement de variable.
Soit X ⩾ 0∫ X

0
g(−t)dt = −

∫ −X

0
g(θ)d.θ = G(0)−G(−X) = 2. arctan(−1)− 2 arctan(−

√
2.X − 1)

∀X ⩾ 0,

∫ X

0
g(−t)dt = 2arctan(

√
2.X + 1)− π

2

7. Soit X ∈ R

∫ X

0
g(t) + g(−t)dt = G(X)−G(0) + 2 arctan(

√
2.X + 1)− π

2

= 2. arctan(
√
2.X − 1)− 2. arctan(−1) + 2 arctan(

√
2.X + 1)− π

2

= 2. arctan(
√
2.X − 1) + 2 arctan(

√
2.X + 1)

et donc lim
X→+∞

∫ X

0
(g(t) + g(−t)dt = π + π = 2π

8. Soit t ⩾ 0
On a directement

h(t) + g(t) =
2t

t2 + 1−
√
2.t

et h(−t) + g(−t) = −2t
t2 + 1 +

√
2.t

On va réduire au même dénominateur en remarquant déjà que

(t2 + 1 +
√
2.t)(t2 + 1−

√
2.t) = ((t2 + 1) +

√
2.t)((t2 + 1)−

√
2.t) = (t2 + 1)2 − 2t2 = t4 + 1

rem: on comprend enfin pourquoi l’énoncé écrivait les monômes des dénominateurs de g(t) et h(t)
dans un ordre inhabituel. . . pour faire apparaître une identité remarquable! et donc

h(t) + h(−t) + g(t) + g(−t) = 2t

(
1

t2 + 1−
√
2.t
− 1

t2 + 1−
√
2.t

)
= 2t

2
√
2.t

t4 + 1
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Ainsi, ∀t ⩾ 0, h(t) + h(−t) + g(t) + g(−t) = 4
√
2.t2

t4 + 1

9. a) En utilisant Q3 et Q7∫ +∞

0

t2

t4 + 1
dt =

1

4
√
2

∫ +∞

0

(
h(t) + h(−t) + g(t) + g(−t)

)
dt

=
1

4
√
2

lim
X→+∞

∫ X

0

(
h(t) + h(−t) + g(t) + g(−t)

)
dt

=
1

4
√
2

(
lim

X→+∞

∫ X

0

(
h(t) + h(−t)

)
dt+ lim

X→+∞

∫ X

0

(
g(t) + g(−t)

)
dt

)
=

1

4
√
2
(0 + 2π)

=
π

2
√
2
.

b) D’après le préambule ∫ +∞

0

1

t4 + 1
dt =

∫ +∞

0

t2

t4 + 1
dt =

π

2
√
2

10. Toujours avec Q3 et Q7∫ X

0

t2

t4 + 1
dt =

1

4
√
2

∫ X

0

(
h(t) + h(−t) + g(t) + g(−t)

)
dt

=
1

4
√
2

(
ln

(
X2 + 1−

√
2X

X2 + 1 +
√
2X

)
+ 2arctan(

√
2X − 1) + 2 arctan(

√
2X + 1)

)
.

En particulier, pour X = 1√
2
, on obtient∫ 1√

2

0

t2

t4 + 1
dt =

1

4
√
2

(
ln

(
1
2 + 1− 1
1
2 + 1 + 1

)
+ 2arctan(1− 1) + 2 arctan(1 + 1)

)

ce qui donne après simplifications
∫ 1√

2

0

t2

t4 + 1
dt =

2arctan(2)− ln(5)

4
√
2

.

11. a) Plusieurs moyens de procéder possibles ; le plus simple étant de reconnaître une série géométrique
de raison q = −x4.
On sait alors que cette série converge ssi |q| < 1 ssi |x| < 1.

Ainsi R′ = 1 et ∀x ∈]− 1,1[, D(x) =
∞∑
n=0

(−x4)n =
1

1 + x4

b) Le théorème de primitivation des séries entières permet d’affirmer que sur l’intervalle
]− R′,+ R′[ les primitives de la fonction somme sont obtenues par intégration terme
à terme.
On a donc ici

∀X ∈]− 1,+ 1[,

∫ X

0
D(x)dx =

∞∑
n=0

(−1)n
∫ X

0
x4ndx =

∞∑
n=0

(−1)nX
4n+1

4n+ 1

En particulier pour X =
1√
2
, cela donne

∫ 1/
√
2

0

dx

1 + x4
=

1√
2
.

∞∑
n=0

(−1)n

4n.(4n+ 1)
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c) L’idée est de faire la question avec Q10, et de penser que le même changement de variable du
préambule va nous donner quelque chose d’intéressant. . .∫ 1/

√
2

0

t2

1 + t4
dt =

∫ +∞

√
2

dx

x4 + 1

=

∫ +∞

0

dx

x4 + 1
−
∫ √

2

0

dx

x4 + 1

=
π

2
√
2
− 1

4
√
2

(∫ √
2

0
h(t) + h(−t)dt+

∫ √
2

0
h(t) + h(−t)dt

)

=
π

2
√
2
− 1

4
√
2

(
ln

(
√
2)2 + 1−

√
2.
√
2)

(
√
2)2 + 1 +

√
2.
√
2)

+ +2 arctan(
√
2.
√
2− 1) + 2 arctan(

√
2
√
2 + 1)

)

=
π

2
√
2
− 1

4
√
2

(
ln

1

5
+ 2 arctan(1) + 2 arctan(3)

)
Après simplifications, on trouve

1√
2
.

∞∑
n=0

(−1)n

4n.(4n+ 1)
=

∫ 1/
√
2

0

dx

1 + x4
=

3π

8
√
2
+

ln 5

4
√
2
− 1

2
√
2
. arctan(3)

Partie II

1. Soit n ⩾ 0

bn+1

bn
=

4n+1

4n
.
((n+ 1)!)2

(n!)2
.
(2n+ 1)!

(2n+ 3)!
= 4.(n+ 1)2.

1

(2n+ 2)(2n+ 3)
=

2(n+ 1)

2n+ 3

Ce qui prouve bien que ∀n ⩾ 0, (2n+ 3)bn+1 − 2(n+ 1)bn = 0

2. On utilise bien sûr la Règle de D’Alembert et on trouve R = 1

3. • On note S : x 7→
∞∑
n=0

bn.x
2n+1

• D’après le théorème de dérivation terme à terme des séries entières, on sait que
i) S est C∞ sur ]−R,+R[

ii) Sur cet intervalle, S′ est obtenue par dérivation terme à terme
Ainsi

∀x ∈]− 1,+ 1[, S′(x) =

∞∑
n=0

(2n+ 1).bn.x
2n

Soit x ∈]− 1,+ 1[,

(1− x2).S′(x)− x.S(x) = (1− x2).
∞∑
n=0

(2n+ 1).bn.x
2n − x.

∞∑
n=0

bn.x
2n+1

=

∞∑
n=0

(2n+ 1).bn.x
2n −

∞∑
n=0

(2n+ 1).bn.x
2n+2 −

∞∑
n=0

bn.x
2n+2

=
∞∑
n=0

(2n+ 1).bn.x
2n −

∞∑
n=0

(2n+ 2).bn.x
2n+2
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Dans la seconde somme, on procède au glissement d’indice n←− n+ 1

(1− x2).S′(x)− x.S(x) =
∞∑
n=0

(2n+ 1).bn.x
2n −

∞∑
n=1

2n.bn−1.x
2n

= b0 +
∞∑
n=1

(2n+ 1).bn.x
2n −

∞∑
n=1

2n.bn−1.x
2n

= 1 +

∞∑
n=1

((2n+ 1).bn.− 2n.bn−1).x
2n

Vérifions, grâce à Q1, que (2n+ 1).bn.− 2n.bn−1 = 0 pour n ⩾ 1
On pose p = n− 1

(2n+ 1).bn.− 2n.bn−1 = (2p+ 3).bp+1 − 2(p+ 1).bp = 0 d’après Q3

Conclusion : S vérifie sur ]− 1,+ 1[ l’équation proposée

• De plus S(0) = b0 = 1

Au final, S vérifie sur ]− 1,+ 1[ le problème de Cauchy proposé

4. • Sur ]− 1,+ 1[ l’équation équivaut à y′ +
x

x2 − 1
.y =

1

1− x2

• La solution générale de l’équation homogène est yh : x ∈]−1,+1[ 7→ K.e−1/2. ln |x2−1| =
K√
1− x2

• On détermine une solution particulière de l’équation complète en utilisant la méthode de la

variation de la constante, en posant yp : x 7→
K(x)√
1− x2

.

En remplaçant dans l’équation cela donne sur ]− 1,+ 1[

K ′(x)√
1− x2

=
1

1− x2
soit K ′(x) =

1√
1− x2

On trouve ainsi K(x) = arcsin(x) + Cste.

Une solution particulière est yp : x 7→
arcsinx√
1− x2

• La solution générale de l’équation complète est ainsi

y : x 7→ arcsin(x)√
1− x2

+
K√
1− x2

avec K ∈ R

• La condition dans le problème de Cauchy considéré est y(0) = 0, ce qui fixe la valeur de K à
zéro.
Ainsi y : x 7→ arcsinx√

1− x2
est l’unique solution au problème de Cauchy.

• Comme S vérifie aussi ce problème, par unicité on a donc ∀x ∈]− 1,+ 1[, S(x) =
arcsinx√
1− x2

5. On suppose que
∑
bn est une série numérique convergente.

On sait dans ce cas que la fonction somme S est définie en 1.
Je rappelle le théorème que je vais utilisé par la suite.

théorème: La fonction somme S d’une série entière est continue sur son ensemble de
définition

Ainsi, ici, on a S qui est continue en 1, et donc en particulier

S(1) = lim
x→1−

S(x) = lim
x→1−

arcsinx√
1− x2
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On aboutit bien à une contradiction car lim
x→1−

arcsinx√
1− x2

= +∞ (limite NON finie)

Conclusion :
∑
bn n’est pas convergente

remarque: on montre qu’il n’y a pas convergence non plus pour x = −1, ce qui permet d’affirmer que
la fonction somme S N’est définie QUE sur l’intervalle ouvert ]− 1,+ 1[
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