
7 Séries entières
ANA 266
Soit

∑
an.z

n une série entière de rayon R.
Dans chacun des cas suivants, indiquer ce que l’on en déduit sur R

1. La suite (
an
2n

)n⩾0 converge vers 0

2. La suite (
an
2n

)n⩾0 ne possède pas de limite

3. La série
∑

an.(−3)n est convergente
4. La série

∑
an.(2i)

n est divergente.
5. La série

∑
an.(−1)n converge mais n’est pas absolument convergente.

ANA 267
A l’aide de la définition, déterminer le rayon et l’intervalle de convergence des séries entières suivantes

i)
∑ zn

n. lnn
ii)

∑ n2

ln9 n
z3n iii)

∑
(3 + (−1)n)n.zn

ANA 268
Soient α et β deux nombres réels.

1. Montrer que les séries
∞∑
n=0

cos(nα + β)

n!
zn et

∞∑
n=0

sin(nα + β)

n!
zn convergent pour tout z ∈ C.

Qu’en déduit-on sur le rayon de ces séries entières?

2. Calculer S(z) =
∞∑
n=0

cos(nα + β)

n!
zn et T (z) =

∞∑
n=0

sin(nα + β)

n!
zn pour z ∈ R

ANA 269 (reconnaître des SE de référence)
Déterminer le rayon et la fonction somme des séries entières suivantes sur l’intervalle ouvert de conver-
gence

i)
∑
n⩾0

2n+1zn

n!
ii)

∑
n⩾0

x4n

(2n)!
iii)

∑
n⩾0

x6n+3

(2n+ 1)!
iv)

∑
n⩾1

(−1)n.x2n+1

(2n)!
v)

∑
n⩾1

(−1)n.x2n

(2n+ 1)!

vi)
∑
n⩾0

2n+3.xn vii)
∑
n⩾1

22n−2.x3n+1 viii)
∑
n⩾1

x2n+1

4n
ix)

∑
n⩾1

2n.xn+2

n+ 1
x)

∑
n⩾0

2n−1.x4n+1

n+ 3

ANA 270
Soient α et β deux nombres réels. Calculer pour tout nombre complexe z tel que |z| < 1 les sommes

S(z) =
∞∑
n=0

cos(nα + β)zn et T (z) =
∞∑
n=0

sin(nα + β)zn

ANA 271
Déterminer le rayon et faire l’étude de la convergence en ±R pour les séries entières suivantes:

1.
∑ xn

2n.n2
2.
∑

(1 +
1

n
)nxn 3.

∑
n3−nxn 4.

∑ n2 + 3n− 2

2n4 − 3n+ 1
xn 5.

∑ xn

√
n

6.
∑ lnn

n
xn

ANA 272
En utilisant la règle de D’Alembert pour les séries numériques, déterminer le rayon des séries entières
suivantes:

i)
∑
n⩾0

(n2 + 3(−2)n + 1)z2n ii)
∑
n⩾0

n!zn iii)
∑
n⩾0

2nnzn!

1

ANA 273
Déterminer le rayon de convergence R et calculer pour tout nombre réel x tel que |x| < R la somme

S(x) =
∞∑
n=1

sin2(n).xn

ANA 274
Soient a et b deux complexes non nuls.

1. Déterminer le rayon de
∑

an.zn et de
∑

an.z3n

2. En déduire le rayon de
∑

(an + bn).zn

3. On suppose que pour n assez grand, on a 2n ⩽ cn ⩽ 3n.
Que dire de Rayon(

∑
cn.z

n)?

ANA 275
1. Déterminer le rayon et la somme des séries entières suivantes:

S1(x) =
∞∑
p=1

x2p

2p
S2(x) =

∞∑
p=0

x2p+1

2p+ 1
S3(x) =

∞∑
p=1

(−1)p
x2p

2p

2. On s’intéresse à la série entière S(x) =
∑
n⩾2

xn

n+ (−1)n

(a) Déterminer son rayon.
(b) A l’aide des séries précédentes, déterminer S(x)

ANA 276
1. On considère S(x) =

∞∑
n=2

lnn.xn. Donner l’ensemble de définition de la fonction S?

2. On considére la suite (an) définie par a1 = −1 et ∀n ⩾ 2,an = − ln(1− 1

n
)− 1

n
.

On pose T (x) =
∞∑
n=1

anx
n. Donner l’ensemble de définition de T .

3. Déterminer une égalité liant S et T ?

ANA 277 (classique)
1. Soit n ∈ N∗.

A l’aide de factorielles, exprimer 2× 4× · · · × (2n) et 1× 3× 5× · · · × (2n+ 1)

2. Vérifier que ∀x ∈]−1,+1[,
1√
1 + x

=
∞∑
n=0

(−1)n

4n

(
2n
n

)
xn et

√
1 + x = 1+

∞∑
n=1

(−1)n+1

4n(2n− 1)

(
2n
n

)
xn

ANA 278
On pose pour tout n entier an = tan

nπ

5
1. Montrer que la suite (an)n est bien définie.
2. Montrer que la suite (an)n est bornée. (on pourra considérer an+5)
3. Montrer que a1 = −a4 et a2 = −a3
4. On considère la série entière

∑
anx

n.
(a) Déterminer son rayon
(b) Etudier la convergence pour x = R et pour x = −R

(c) Calculer S(x) =
∞∑
n=0

an.x
n pour tout x ∈]− 1,+ 1[

2



ANA 279
Montrer que

∫ 0

−1

ln(1− t3)dt =
∞∑
n=0

(−1)n+1

n.(3n+ 1)

ANA 280
Rayon et fonction somme de

i)
∑
n⩾0

n+ 1

n!
xn ii)

∑
n⩾0

n2 + 3n− 4

(n+ 1)!
xn ii)

∑
n⩾0

n3

(n+ 1)!
xn

ANA 281
Exprimer les fonctions suivantes au voisinage de 0 comme des sommes de séries entières, et préciser
l’intervalle de validité

f1 : x 7→ ln(1 + 3x2) f2 : x 7→ ln(2 + 3x2) f3 : x 7→ cos2 x f4 : x 7→ cos3 x

ANA 282 (produit de Cauchy)
On considère la suite (cn) définie par ∀n ⩾ 0, cn =

n∑
j=0

1

j!
Déterminer le rayon et la fonction somme de

∑
n⩾0

cnz
n

ANA 283
Déterminer le rayon des séries entières du type

∑ zn

nα
avec α ∈ C

ANA 284
Déterminer le rayon et la somme de la série entière

∑
n⩾0

(−2)n

2n+ 1
.x2n+1

ANA 285
Montrer que la fonction g définie par g(x) =


ex − 1− x

x2
si x ̸= 0

1

2
si x = 0

est de classe C∞ sur R et donner f (n)(0).

ANA 286
Soit la fonction f définie sur R par f(x) =

{
cos

√
x si x ⩾ 0

ch
√
−x si x < 0

.

Montrer que f est de classe C∞ sur R et donner f (n)(0).

ANA 287 (une justification de l’existence d’un DSE)
On note f(x) = ch(x). cos(x)

1. Montrer que f est DSE. Quel est le rayon de sa série entière?
2. Déterminer le DSE de f en utilisant les complexes.

ANA 288
1. Que vaut lim

n→∞

(
1 +

1

2
+ · · ·+ 1

n

)
? Pourquoi?

2. Déterminer le rayon de convergence R et calculer pour tout réel x tel que |x| < R

la somme S(x) =
∞∑
n=1

(−1)n+1

(
1 +

1

2
+ · · ·+ 1

n

)
xn

(On pourra calculer d’abord le produit (1 + x)S(x))
3. Etudier la convergence de la série entière en ±R

3

ANA 289 (une fonction C∞ mais non DSE!)
Nous allons montrer que la fonction f : x →

{
0 si x ⩽ 0

exp(− 1
x
) si x > 0

est de classe C∞ sur R mais n’est pas

développable en série entière au voisinage de 0.
1. Montrer que f est C∞ sur R∗

2. Montrer par récurrence sur n qu’il existe un polynôme Pn tel que ∀x > 0, f (n)(x) = Pn(
1

x
)e−1/x.

(on pourra établir une formule de récurrence entre Pn+1 et Pn)
3. En déduire que f est infiniment dérivable en 0 et que f (n)(0) = 0 pour tout entier n

4. Montrer que f n’est pas développable en série entière au voisinage de 0

ANA 290 (équation différentielle)
On considère la fonction f définie sur R par f(x) =

ln(x+
√
1 + x2)√

1 + x2

1. Vérifier que f est solution de l’équation différentielle (E) : (1 + x2)y′ + xy = 1

2. Soit
∑

anx
n une série entière de rayon R ̸= 0 et de fonction somme S

Montrer que S vérifie (E) sur ]−R,+R[ ssi a1 = 1 et ∀n ⩾ 1, an+1 = − n

n+ 1
an−1

3. Démontrer que si f est DSE alors ∀n ⩾ 0, a2n = 0 et a2n+1 = (−1)n
(2n.n!)2

(2n+ 1)!
4. Conclure que f est DSE.
5. f est-elle une fonction impaire?

ANA 291
Soit p ∈ N. On note f(x) =

∞∑
n=0

(
n+ p
p

)
xn

1. Déterminer le rayon de cette série entière.
2. Justifier que f vérifie sur ]− 1,+ 1[ l’équation différentielle (1− x)y′ − (p+ 1)y = 0

3. En déduire une expression simple de f

ANA 292
Soit la suite (an)n⩾0 définie par a0 = 1, a1 = a2 = 0 et ∀n ⩾ 2, (n+ 1)an+1 = nan +

1

2
an−2.

On s’intéresse à la série entière
∑

anx
n et on note S(x) =

∞∑
n=0

anx
n sa somme.

1. Montrer que pour tout entier n, on a an ∈ [0,1]

2. Montrer la suite (nan)n⩾0 est croissante
3. Déterminer le rayon R

4. Déterminer une équation différentielle linéaire du premier ordre satisfaite par S.
Puis en déduire S.

ANA 293 (DSE de x 7→ (1 + x)α (démo de cours))
Pour tout α ∈ R et tout x réel on note fα(x) = (1 + x)α

1. Lorsque α ∈ N, donner le DSE de fα et son rayon.
Dans la suite on supposera que α ̸∈ N

2. Déterminer la série de Taylor de f . Quel est le rayon de cette série entière?
3. Déterminer une équation différentielle linéaire du premier ordre satisfaite par fα et montrer que sa

série de Taylor vérifie la même équation différentielle. (on précisera sur quel intervalle)
4. Justifier que fα est DSE et retrouver le résultat de cours

4



ANA 294
α et β étant deux réels, trouver le rayon de convergence de la série entière

∑
anz

n avec :

1. an =
nαn

n!
2. an =

n!

nn
3.an =

(
1 +

1

n

)n

4. an = cosn

5. an = arccos(1− 1

n2
) 6. an =

π

2
− arcsin(

n− 1

n
) 7. an = e

√
n 8. an = nn+1

9. an = arctan(nα) 10.
(
n+ α

n+ β

)n

11.
n2

4n + n
12 . cos(π

√
n2 + n+ 1)

13.
(

1

1 +
√
n

)n

14.
(
n− 1

n

)n2

15.
shn

ch2 n
16.

cos2 n

n

ANA 295
On suppose que les séries entières

∑
a2nz

2n et
∑

a2n+1z
2n+1 ont le même rayon de convergence noté R.

Montrez que R est aussi le rayon de convergence de
∑

anz
n.

ANA 296
(θ ∈ R) Déterminer rayon, intervalle de convergence et fonction somme(sur l’intervalle ouvert de conver-
gence) des séries entières suivantes :

1.
∑
n⩾0

n2xn 2.
∑
n⩾0

xn

(n+ 1)(n+ 3)
3.

∑
n⩾0

ch(n)xn 4.
∑
n⩾0

sh(n)xn

5.
∑
n⩾0

cos(nθ)xn 6.
∑
n⩾0

sin(nθ)xn 7.
∑
n⩾0

n+ 3

2n+ 1
xn 8.

∑
n⩾0

(−1)n+1.n.x2n+1

9.
∑
n⩾0

n2 + 1

n+ 1
xn 10

∑
n⩾0

nxn

(2n+ 1)!
11.

∑
n⩾0

xn

(n+ 1)(2n+ 1))
12.

∑
n⩾0

n2 − n− 1

(n+ 1)!
xn

13.
∑
n⩾0

n3xn 14.
∑
n⩾0

2n

n+ 1
x3n 15.

∑
n⩾0

1

3n(n+ 2)!
x2n 16.

∑
n⩾1

x4n−1

4n− 1

17.
∑
n⩾2

xn

n(n− 1)
18.

∑
n⩾0

chn

n!
xn 19.

∑
n⩾0

(n2 + 1)xn 20.
∑
n⩾0

n3.xn

(n+ 3)!

21.
∑
n⩾1

(−1)n

4n
x4n−1 22.

∑
n⩾0

n2 + n+ 1

2n
xn 23.

∑
n⩾0

n3 + n+ 1

n+ 1
xn 24.

∑
n⩾0

cos(
2nπ

3
)xn

ANA 297
On souhaite développer en série entière la fonction f : x 7→

∫ 1

0

dt

1− xt+ xt2
.

1. Montrer que pour tout x ∈]−∞,4[, f(x) est bien définie.
2. On note Jp,q =

∫ 1

0
tp(1− t)qdt. Calculer Jp,q pour (p,q) ∈ N2

3. On note In =
∫ 1

0

xn+1(t− t2)n+1

1− xt+ xt2
dt. Montrer que l’on a f(x) =

n∑
k=0

(k!)2

(2k + 1)!
xk + In

4. Montrer que pour |x| < 4, on a lim In = 0. Conclure.

ANA 298
On conisidère la série entière

∑
n⩾1

xn

n(n+ 1)

1. Déterminer son rayon et sa fonction somme sur l’intervalle ouvert de convergence.
2. La série est-elle convergente pour x = 1 et x = −1?

Dans ce cas, donner la valeur des sommes de ces séries

5

ANA 299
1. Calculer

+∞∑
n=1

xn

n(n+ 1)(2n+ 1)
pour x dans l’intervalle ouvert de convergence.

2. Calculer , de deux manières différentes,
+∞∑
n=1

1

n(n+ 1)(2n+ 1)
.

on rappelle le développement asymptotique Tn =
n∑

k=1

= lnn + γ + o(1) où γ désigne une constante

réelle, la constante d’Euler.

ANA 300
Développement en série entière de la fonction f définie par

1. f(x) = earcsinx 2. f(x) =
arcsinx√
1− x2

3. f(x) = arctan

(
2− x2

2 + x2

)
4. f(x) = e

x2

2

∫ x

0
e−

t2

2 dt 5. f(x) =
1

1 + x+ x2
6. f(x) = cos3 x

7. f(x) =
1 + 3x2

(1− x)3
8. f(x) = (arcsin x)2 9. f(x) = cos(x+ 1)

10.f(x) = (x+ 1) ln(x+ 1) 11.f(x) =
ln(x+

√
1 + x2)√

1 + x2
12.f(x) = (arctan(x))2

13. f(x) = arctan

(
1

x+ 1

)
14. f(x) =

∫ x

0
cos(t2)dt 15. f(x) = sh(x) cos(x)

16. f(x) = ln

(
2− x

3− x2

)
17. f(x) = ln

(
1− x3

1− x

)
18. f(x) = ln

(
1 +

x2

1 + x

)
ANA 301
Soit θ ∈]0,π[. Développer en série entière la fonction f : x → sin θ

1− 2x cos(θ) + x2

ANA 302
On considère la SE f(x) =

∞∑
0

anx
2n+1 =

∞∑
0

4nn!2

(2n+ 1)!
x2n+1.

1. Vérifier que ∀ n≥1, (2n+ 1)an − 2nan−1 = 0.
2. En déduire une équation différentielle linéaire du premier ordre vérifiée par f et une expression de

f à l’aide de fonctions usuelles.(on trouvera (1− x2)y′ − xy = 1)

ANA 303
Soit (an) la suite de réels définie par a0 = a1 = 1 et la relation an+1 = an + 2

an−1

n+ 1
pour n ⩾ 1

1. Prouver que pour tout n ⩾ 1, 1 ⩽ an ⩽ n2

2. En déduire le rayon de convergence de
∑
n⩾0

anx
n

3. Prouver que
∑
n⩾0

anx
n vérifie une équation différentielle du premier ordre à déterminer.

(on trouvera (1− x)S ′(x)− (2x+ 1)S(x) = 0)
4. En déduire la valeur de la somme de cette série entière.

5. A partir de l’expression de S ainsi trouvée, démontrer que an =
n∑

p=0

(−2)n−p

(n− p)!
.
(p+ 2)(p+ 1)

2

ANA 304
1. Déterminer les solutions de y′′ + xy′ + y = 0 qui sont développables en série entière.

2. Reconnaître parmi ces solutions la fonction x 7→ e
−x2

2

3. Toutes les solutions de l’équation différentielle sont-elles développables en série entière?

6



ANA 305
On considère la suite (an)n⩾0 définie par

{
a0 = 0

∀n ∈ N, an+1 = 2an + n

On considère la série entière
∑
n⩾0

anx
n, et on note S(x) sa fonction somme.

préliminaire: donner le DSE de x 7→ 1

(1− x)2
ainsi que son rayon.

1. Montrer que 0 ⩽ an ⩽ 3n pour tout entier n.
2. En déduire que la série entière a un rayon non nul (que l’on appellera R). Peut-on donner un

minorant de R?

3. Montrer que ∀x ∈]−R,+R[, S(x) = 2xS(x) + x2
∞∑
n=0

(n+ 1)xn

4. Déterminer les trois réels a, b et c tels que
X2

(1−X)2(1− 2X)
=

a

1− 2X
+

b

1−X
+

c

(1−X)2

5. En déduire l’expression explicite de an en fonction de n.

ANA 306
On pose f(x) =

∞∑
n=0

un.x
n avec un =

∫ π/2

0

cos2n(t)dt

1. Etablir la relation 2(n+ 1)un+1 = (2n+ 1)un

2. Déterminer le rayon de convergence de
∑

unx
n

3. Montrer que f est solution de 2(1− x)y′ − y = 0

4. En déduire f(x) et un

ANA 307
Soit f : x 7→

∫ x

−∞

dt

1 + t+ t2

1. Montrer que f est définie et C1 sur R, et donner f ′(x)

2. Factoriser 1−X3. En déduire que f est dse et donner son dse

ANA 308
Soit (an) définie par a0 = 1 et ∀n ∈ N, an+1 = 1 +

n+ 2

2(n+ 1)
an

1. Montrer que ∀n ∈ N, 1 ⩽ an ⩽ 4

2. Déterminer le rayon de convergence de la série entière
∑

anx
n

3. Calcule sa somme S(x) en exprimant S ′(x) en fonction de x et de S(x), puis en résolvant l’équation
différentielle

ANA 309 (intégration terme à terme)
On considère la suite (un) définie par ∀n ⩾ 0, un =

∫ 1

0

tn. sin(π.t)dt

1. Montrer que la série de terme général un est convergente

2. Montrer l’égalité
∞∑
n=0

(−1)n.un =

∫ 1

0

sin(π.t)

1 + t
dt

7

Quelques corrigés

294
�� ��9

– On étudie la série entière
∑

anz
n avec an = arctan(nα) avec α paramètre réel.

– On peut tout aussi bien utiliser la définition du rayon que la règle de D’Alembert ici pour répondre
à la question posée(je vous laisse faire l’un et l’autre en tenant compte des indications ci-dessous).
Il faudra juste bien prendre soin à distinguer 3 cas différents dans l’étude.

i) si α > 0 on a lim an =
π

2
. On trouve R = 1

ii) si α = 0 on a pour tout entier an =
π

4
, et on trouve R = 1

iii) si α < 0 on a lim an = 0 (ce qui ne nous permet pas de déterminer le rayon, mais juste de dire
que celui-ci est supérieur ou égal à un lorsque l’on utilise sa définition).
Comme α < 0 on a limnα = 0, or arctanx ∼

0
x, on a donc an ∼

+∞
nα.

Et on trouve alors que R = 1

Conclusion: pour tout α ∈ R on trouve R = 1�� ��10

– On étudie la série entière
∑

anxz
n avec an =

(
n+ α

n+ β

)n

– Pour n assez grand on a

ln an = n ln

(
n+ α

n+ β

)
= n ln

1 +
α

n

1 +
β

n

 = n

(
ln(1 +

α

n
)− ln(1 +

β

n
)

)

Ce qui donne le DL suivant

ln an = n

(
α

n
− β

n
+ o(

1

n
)

)
= α− β + o(1)

On trouve donc que an = exp(α− β + o(1)) et donc que lim an = exp(α− β) > 0

– Nous allons déterminer le rayon à l’aide de sa définition

R = sup{r ⩾ 0|la suite (|an|rn) est majorée }

1. pour r ∈ [0,1[ on a lim |an|rn = 0

2. pour r = 1 on a lim |an|rn = exp(α− β)

3. pour r > 1 on a lim |an|rn = +∞
On a donc R = sup([0,1]) = 1

301
∑

sin((k + 1)θ).xk

302 (1− x2)f ′(x)− xf(x) = 1 cette équa. diff. a pour sol f(x) =
arcsinx+ λ√

1− x2

303 1. La première question se démontre par récurrence à l’aide d’une récurrence forte.
Notons pour tout k ⩾ 1,Pk la proposition ”1 ⩽ ak ⩽ k2”

– la propriété est vraie au rang 1 et au rang 2 car

8



– a1 = 1 et 1 ⩽ a1 ⩽ 12

– a2 = 2 et 1 ⩽ a2 ⩽ 22

– Supposons la propriété vraie jusqu’à un rang n ⩾ 1

(a) Comme an ⩾ 1 et an−1 ⩾ 1

On a an+1 = an + 2
an−1

n+ 1
⩾ 1 +

2

n+ 1
> 1

(b) Comme an ⩽ n2 et an−1 ⩽ (n− 1)2

on a an+1 = an + 2
an−1

n+ 1
⩽ n2 +

2(n− 1)2

n+ 1
=

n3 + 3n2 − 4n+ 2

n+ 1
Comme pour n ⩾ 1 on a 7n ⩾ 1, on a aussi 3n+ 1 ⩾ −4n+ 2, et on en déduit alors que

an+1 ⩽
n3 + 3n2 + 3n+ 1

n+ 1
=

(n+ 1)3

n+ 1
= (n+ 1)2

On a ainsi montré que Pn+1 était vrai.
2. Notons bn = 1 et cn = n2.

Ainsi que Rb et Rc les rayons des séries entières
∑

bnx
n et

∑
cnx

n

Il est facile de montrer que Rb = Rc = 1.
Sachant que pour tout entier n on a |bn| ⩽ |an| ⩽ |cn| et en utilisant le théorème 8 (1) du cours,
on peut en déduire que R = 1

3. Soit x ∈]− 1,+ 1[ fixé.
Pour tout n ⩾ 1, on a (n+1)an+1 = (n+1)an+2an−1 et donc (n+1)an+1x

n = (n+1)anx
n+2an−1x

n

Par sommation, nous allons avoir

∞∑
n=1

(n+ 1)an+1x
n =

∞∑
n=1

(n+ 1)anx
n + 2an−1x

n = x
∞∑
n=1

nanx
n−1 +

∞∑
n=1

anx
n + 2x

∞∑
n=1

an−1x
n−1

Chacune des sommes est facile à identifier, on a S ′(x)− a0 = xS ′(x) + (S(x)− a0) + 2xS(x)

Et compte tenu de a0 = a1 = 0, cela nous donne bien l’égalité (1− x)S ′(x)− (2x+ 1)S(x) = 0

4. Sur l’intervalle ]− 1,+ 1[ l’équation précédente équivaut à S ′(x)− 2x+ 1

1− x
S(x) = 0

On a
∫ 2x+ 1

1− x
dx =

∫ 2(x− 1) + 3

1− x
dx =

∫
−2 +

3

1− x
dx = −2x− 3 ln(1− x) + cste

La solution générale sur ]− 1,+ 1[ est donc x 7→ K.
e−2x

(1− x)3

Et comme S(0) = a0 = 1, on peut affirmer que ∀x ∈]− 1,+ 1[, S(x) =
e−2x

(1− x)3

5. – On sait que e−2x =
∞∑
n=0

(−2x)n

n!
=

∞∑
n=0

(−2)n

n!
xn pour tout x réel.

En utilisant le théorème de dérivation terme à terme deux fois à partir de la série entière
∞∑
n=0

xn, on montre que
2

(1− x)3
=

∞∑
n=2

n(n− 1)xn−2 =
∞∑
n=0

(n+ 2)(n+ 1)xn (rayon = 1)

– On a donc ∀x ∈]− 1,+ 1[, S(x) =

(
∞∑
n=0

(−2)n

n!
xn

)(
∞∑
n=0

(n+ 2)(n+ 1)xn

)
La série entière

∑
anx

n est donc le produit de Cacuchy des deux séries ci-dessus.
D’après la formule du produit de Cauchy on peut affirmer que

∀n ⩾ 0, an =
n∑

p=0

(−2)n−p

(n− p)!
.
(p+ 2)(p+ 1)

2
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304 1. – On utilise la méthode et la rédaction classique. C’est à dire que l’on procède par
analyse-synthèse en supposant qu’une SE de rayon R non nul vérifie (E)
On trouve alors que si la série

∑
anx

n a un rayon non nul et vérifie l’équa. diff, on a
∀n ⩾ 0,(n+ 2)an+2 + an = 0.
Puis en distinguant les cas pair et impair (car la relation de récurrence "va de deux en deux"),

on arrive à ∀p ⩾ 0, a2p =
(−1)p

2p.p!
a0 et a2p+1 =

(−1)p.2p.p!

(2p+ 1)!
a1

La série
∑

anx
n s’écrit alors comme la somme a0.

∞∑
p=0

(−1)p

2p.p!
x2p + a1.

∞∑
p=0

(−1)p.2p.p!

(2p+ 1)!
x2p+1

En utilisant la règle de D’Alembert, on trouve que:

la SE
∞∑
p=0

(−1)p

2p.p!
x2p a pour rayon R1 = ∞ et la SE

∞∑
p=0

(−1)p.2p.p!

(2p+ 1)!
x2p+1 a pour rayon R1 = ∞

On peut donc affirmer que le rayon de la SE
∑

anx
n est R = ∞, ce qui valide les calculs

précédents sur ]−∞,+∞[

– Conclusion: les solutions DSE de l’équation différentielle sont les fonctions qui s’écrivent

A.
∞∑
p=0

(−1)p

2p.p!
x2p +B.

∞∑
p=0

(−1)p.2p.p!

(2p+ 1)!
x2p+1 avec (A,B) ∈ R2. Elles ont un rayon infini.

2. Notons pour tout x ∈ R, T (x) =
∞∑
p=0

(−1)p

2p.p!
x2p. On a T (x) =

∞∑
p=0

(−x2/2)p

p!
= exp(−x2/2)

3. – Notons pour tout x ∈ R, U(x) =
∞∑
p=0

(−1)p.2p.p!

(2p+ 1)!
x2p+1

– Notons S [S ′] l’ensemble des solutions [DSE] de l’équa diff (E) sur R.
– On a évidemment S ′ ⊂ S
– S est un sev de dimension 2 de l’ev C2(R,R) car l’équation différentielle (E) est une EDLNH

du second ordre, à coefficients continues sur R
– On a prouvé que S ′ = vect(T,U).

Or (T,U) est une famille libre, donc S ′ est un espace vectoriel de dimension deux!
– on peut donc affirmer que S = S ′: toutes les solutions de (E) sur R sont DSE!
– pour justifier que (T,U) est une famille libre, on peut, par exemple, remarquer que T est une

fonction paire (autre que la fonction nulle) et U est une fonction impaire(autre que la fonction
nulle): donc T et U ne sont pas colinéaires!

305 1. on trouve (a,b,c) = (1,0,− 1)

2. an = 2n − (n+ 1)
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