2 Algébre bilinaire

ALG 249

+1
Montrer que <, >: (f,g) — F(t)g(t)V1 — t2dt définit un produit scalaire sur E = C°([-1, + 1],R)
1

ALG 250
Soit n > 1 un entier fixé.
Pour tous polynomes P et @ de R,[X], on pose < P,Q >= P(0).Q(0) + P(1).Q(1)
1. Calculer < X2 —2X +1,3X +2 >
2. Montrer que <, > est une forme bilinéaire symétrique
3. Montrer que < , > est positive
4. Calculer < X% — X, X? — X >.
En déduire que < , > n’est pas un produit scalaire sur R, [X] lorsque n > 2
5. Montrer que <, > est un produit scalaire sur R;[X].
6. Déterminer une bon de R;[X]

ALG 251 (n)Q(n)

> P
On note E =R[X] et < P,Q >= Y o
n=0

1. Montrer que la série ci-dessus est bien toujours convergente
2. Montrer que < , > est un produit scalaire sur £

ALG 252
On note E l'espace vectoriel des suites réelles 3-périodiques.
On pose

p:ExE — ]R2

() — Y (g + kugg) (vp + k)
k=0
1. Montrer que F est un espace vectoriel. Donner une base de
2. Montrer que ¢ est un produit scalaire sur F
3. Déterminer une bon de E pour le produit scalaire ¢

ALG 253
Soit n > 1.
1

1. Montrer que sur £ = R,[X], < P,Q >= / P(t)Q(t)dt est un produit scalaire

-1
2. Montrer que la famille (1,X,3X2 — 1) est une famille orthogonale.
3. Justifier que pour tout (a,b,c) € R3, on a

1
/ [a.(32 = 1) + bt + (:]2 dt = a*. /

1 J—1

1 1 1
(382 — 1)2dt + b*. / t2.dt + . / dt
-1 J—

4. Déterminer une base orthonormale de Ry[X]

ALG 254

1
Sur £ = C*([0,1],R), on pose < f,g >= f(0)g(0) +/ f'(t)g'(t)dt. Est-ce un produit scalaire sur E?
0

ALG 255
Soient n et p deux entiers strictement positifs, et (aq,...,a,) p réels distincts.

)
On pose E = R,,[X] et on considére 'application ¢ définie sur R, [X]xR,,[X] par ¢(P,Q) = Y P(ax)Q(ax)

k=1
1. Montrer que ¢ est une forme bilinéaire symétrique positive

oS

2. En considérant le polynéme R(X) = (X —a1)(X —ag)... (X —ap) = [[(X —ax),

k=1

montrer que ¢ n’est pas un produit scalaire sur E lorsque n > p
3. Montrer que ¢ est un produit scalaire sur E lorsque n < p — 1

ALG 256
Soit (a,b,c) € R3.
Pour tout ¥ = (z1,72) € R? et ¥ = (y1,42) € R, on pose ®(Z,§) = z1y1 + az1ys + bray + cTays.
Nous allons chercher une cns sur (a,b,c) pour que ¢ soit un produit scalaire sur R?
1. Justifier que ® n’est pas défini pour (a,b,c) = (1,1,1)
2. Montrer que ¢ est bilinéaire
3. Montrer que ® est symétrique ssi a = b
Dorénavant, on suppose a = b
4. Montrer que ® est positive ssi ¢ > a?
(on pourra penser & une mise sous forme canonique)
5. En déduire que ® est un produit scalaire sur R? ssi a = b et ¢ > a®.
Donner alors une bon de R?

ALG 257
Soit (F, <, >) un espace préhilbertien.
Soient (1, ...,%,) une famille de vecteurs de E.

1. Montrer que
||f1 + 2 +f3H2 = Hf1HZ + Hfg”z + Hf‘;Hz +2.< fl,fg > 42.< fl,fg > +2.< fz,fg >

2. Justifier que d’une maniére plus générale

n
18+ P =D @2 Y <& >
i=1

1<i<j<n

ALG 258 (dans un espace de fonctions, qui formalise les séries de Fourier)
Soit E = C°([0,27],R) muni du produit scalaire < f,g >= f[mﬂ] fg.
Pour tout n € N, on note f, : t — cos(nt) et g, : t — sin(nt)

1. Montrer la famille F = (f,),s0 est une famille orthogonale

2. Montrer la famille G = (g,),>1 est une famille orthogonale

3. F UG est-elle une famille orthogonale?

ALG 259

A T'aide de I'ICS, déterminer un majorant de |x + 2y + 32| sous la condition 2 + ¢ + 22 =1

ALG269 ) . ) o . Tt Tat ot =n

On souhaite déterminer les réels x1,zs, ... ,x, qui vérifient le systéme ) > ) .
rvwtraz+---+x;, =n

Pour cela, on va se placer dans £ = R™ muni du produit scalaire usuel noté < , >

On notera également @ = (1,22, ...,2,) et ¥ = (1,1,...,1).

En utilisant I'inégalité de Cauchy Schwarz aux vecteurs & et ¢/, résoudre la question posée!

2



ALG 261
Montrer que pour toute fonction f continue et strictement positive sur [a,b], on a

([ o) (] )

Pour quelles fonctions f a-t-on I'égalité?

ALG 262
Soit Z et ¥ deux éléments de (E, <, >).
On va montrer que 7 et ¢ sont orthogonaux ssi VA € R, ||Z + A\y|| > [|Z]]
1. Montrer que si Z et ¢ sont orthogonaux alors VA € R, ||Z + Ay]| = ||Z]]
2. On suppose que YA € R, ||Z + Ay]| > ||Z]|
(a) Justifier que VA € R, A2 < 4,7 > 42\ < £,5 >> 0
(b) En déduire que Z et ¥ sont orthogonaux

ALG 263 (un exemple juste destiné a revoir une formule!)

Soit » > 1 un entier fixé.
n

Pour tous polynémes P et Q de R, [X], on pose < P,Q >= 5" P%™(0).Q%"(0)
k=0

Justifier que <, > est un produit scalaire sur R, [X]

ALG 264

Soit (B, <, >) un e.p.r et (e,

...,&,) une famille de vecteurs unitaires tels que:

n
Vie B|#P =) <#&>?
1

1. Montrer que (e_f7 o e_n>) est une famille orthonormale.
2. On note F = vect(é, ... ,e,).
Déterminer F*, et en déduire que (e_f, e ,e_,L>) est une base orthonormale de F
ALG 265
Soit (F, <, >) un espace euclidien de dimension n, et (e_f7 . 7c_,z) une famille de vecteurs telle

n
que: VT € E||Z]|]? =Y < T,¢; >2
1
1. On note F = vect(éy, ... ,é,) . Déterminer F- et en déduire que (ef,...,e,) est une base de E.
n
2. Démontrer que: V(Z,4) € E?, < Z,§ >= > < 7,¢ > . < ,¢; > (on pourra développer ||+ ¢][*)

=1
ALG 266
On considére £ = R,[X] muni du produit scalaire < P,Q >= P(—1)Q(—1) + P(0)Q(0) + P(1)Q(1)
1. On note D = vect(X — 2). Déterminer D+
2. Soit F = {P € E|P(3) = 0}.
(a) F et D sont-ils deux sev orthogonaux?
(b) Déterminer F+.

ALG 267

Soient F; et Fy deux sev. Montrer que:
1. (Fy + Fz)L = FlL N FQL
2. Ft+Fc(FinFy)*

ALG 268
Soit E = C°([0,1],R) muni du produit scalaire ¢(f,g) = fol f®)g(t)dt.
On considére F = {f € E|f(0) =0}
1. Soit f e F*
(a) Montrer que fol t.f2(t)dt =0
(b) En déduire que f =0
2. Que vaut FL?
3. En déduire (F*)*

ALG 269
(E, <, >) est un espace préhilbertien.
Soit @€ Eet A€ R.
On souhaite résoudre 1'équation < @, >= X (C)
1. Traiter le cas ot @ = 0
2. On considere désormais que @ # 0
(a) Déterminer une solution particuliére .
(On pourra chercher Ty sur une droite judicieuse)
(b) En déduire que & vérifie (C) ssi Z est la somme de Zp et d’un autre vecteur appartenant a un
espace que l’on précisera
(c) Faire un dessin dans le cas ot E = R?

ALG 270 (Gram-Schmidt)
1. On se place dans £ = R* muni de son psu.
Déterminer une base orthonormée de F = {(x,y,z,t) e R |x —y — 2 —t =0}
+1
2. On se place dans E = C°([-1,1],R) muni du ps < f,g >= / F(®)g(t)dt.
-1
Orthonormaliser la famille F = (t — 1,¢ — [t|,t — t)

ALG 271
Soit F = C°([-1,1],R). Pour f et g dans F, on pose < f,g >= jjl Ft)g(t)dt
(On admet qu’il s’agit d'un produit scalaire sur F)
On note P et Z les sous-ensembles de £ formés des fonctions paires et impaires.
On rappelle que PG Z = FE
1. Montrer que P et Z sont deux sev orthogonaux.
A-t-on montré que P+ = Z? Sinon qu’a-t-on montré?
2. Soit f € PL.
D’aprés le rappel, on peut dire 3! (p,i) e P X I, f=p+1
(a) Montrer que p = 0. Quelle inclusion a-t-on prouvé?
(b) Que peut-on conclure entre P+ et T?



ALG 272
N désigne un entier compris entre 1 et 4.
On considére F = R* muni de sa base canonique (i,5,k,l).
N
On pose pour tout & = (21,22,73,%4) € E et y = (y1,42,43,44) € B, < 1,y >= 3 0.7y
i=1
1. <, > est-il un produit scalaire sur F lorsque N = 37
Dans la suite on suppose que N =4
2. Justifier que (E, <, >) est un espace euclidien
3. Montrer que le plan F' = vect((1,1,0,0),(1,0,1,0)) et la droite D = vect((—6,3,2,1)) sont orthogo-
naux. A-t-on F+ = D ou F = D*?

ALG 273
On munit R[X] du produit scalaire < P, >= fjll P()Q(t)dt.
On admet la propriété P suivante:
il existe une unique suite de polynomes (P,),>o formée de polynomes orthogonaux deux a deux et tels
que:
i) P, est un polynéme de degré n
ii) Le coefficient dominant de P, vaut 1

1. (a) A P’aide de coefficients inconnus, déterminer Py, P et Ps

3
(b) On donne Py = X3 — —X.

Veérifier qu’il est bien grthogonal aux trois polynémes que vous avez trouveés.
2. Dans cette question on souhaite montrer que P, est paire [impaire| lorsque n est pair[impair]|.
Pour cela, on pose Q,(X) = (—1)"P,(—X)
(a) Pour tout n # m, calculer < Q,,Qm, >
(b) Donner le degré et le coeflicient dominant de @,
(c) Conclure

3. Soit n > 1 un entier. On souhaite montrer dans cette question que P,.; — X P, est élément de
lorthogonal de R, _o[X].

(a) Pour Q € R, _5[X], justifier que < P,41,Q >=0 et que < XP,,Q >=< P,,XQ >=0
(b) Conclure

4. Déduire des questions précédentes que pour tout n > 1 il existe A, € R tel
que Pn+1 =XP,+ MNP
Donner les valeurs de A\ et Ay

ALG 274 (Matrice de Hilbert)
Soit H = (hij) € M,(R), avec h;; =

On identifie R" et M,, 1 (R).
On pose pour (X,)Y) e R" x R", < XY >= XT.HY

_
itj—1

1
1. Veérifier que Vi(,j) € [1,n]? hij = / =2 gy
0

T

non

r1
ona< XX >=> > z.x;.h;= / (Z wt™h)2dt
0 =1

i=1j=1

2. Montrer que pour tout X =

Tn
3. Montrer que <, > est un produit scalaire sur R”
4. En déduire que H est une matrice inversible

ALG 275

Pour u = (z,y) € R et v = (2/,y) € R?, on pose p(u,w) = 2zx’ + 2yy’ + 2y’ + 2’y
1. Montrer que ¢ définit un produit scalaire sur R?
2. La base canonique de R? est-elle orthogonale pour le produit scalaire ¢?
3. Déterminer une base de R? orthonormée pour ce produit scalaire

ALG 276 (dans un espace de suites)
On note l5(R) Iensemble de suites (u,) telles que > u? converge, cad

Ib(R) = {u = (tun)nz0 € RN D u2 CV }

n=0

Pour u et v éléments de Io(R), on pose < u,v >= Y u,v,
n=0

1. Montrer que la série > u,.v, est bien convergente lorsque u et v sont éléments de l(R)
2. Montrer que (I5(R), <, >) est un espace préhilbertien
00 2 00 n
3. En déduire que pour tout (u,v) € lx(R)?, (Z unxvn) <> ( ui’vik)
n=0 n=0 \k=0
ALG 277

Soit (E, <, >) un espace euclidien de dimension 4 et B = (e1,e2,e3,e4) une bon de E
Soit u € L(E) de trace nulle et A = Matg(u)

1. Montrer que i < ul(e;),e; >=0
En déduire q:fill existe (z,5) € [1,4]? tel que < u(e;),e; >= 0 et < u(e;),e; >< 0

2. En considérant le fonction f : t —< u(te; + (1 — t)ejte; + (1 — t)e; >, montrer qu'il un vecteur
unitaire w tel que < u(w),w >=0

3. En déduire I'existence d’une bon B’ telle que le coefficient de la premiére ligne et premicre colonne
de la matrice de u dans cette base soit nul.

4. Prouver qu’il existe une bon B” telle que les coefficients diagonaux de la matrice de u dans cette
base soient tous nuls.

ALG 278
Dans R? muni du produit scalaire usuel, appliquer le procédé d’orthonormalisation de Schmidt & la
famille (7),75,73) = (i + k, — 20 + 3k,i + ] + k)
ALG 279
Soit A € GL,(R). On note B = AT.A
Pour tout X,Y € M, 1(R) on pose ¢(X,Y) = XTBY
On identifie R" et M,,1(R), et on note B = (ey, ... ,e,) la base canonique de R™
1. Montrer que ¢ définit un produit scalaire sur R"
2. Montrer B' = (A™1ey, ..., A7 e,) est une base de R™ orthonormée pour
T
3. Quels sont les coordonnées de X = dans la base B'?

Tn



ALG 280
Soit n > 1 et E =R, [X].
Pour tout (P,Q) € E? on pose < P.Q >= [° P(t)Q(t)e'di
1. Justifier que 'intégrale est bien toujours convergente
2. Justifier que <, > est un produit scalaire sur F
3. On note (P, P, ...,P,) la base orthonormée de R, [X] obtenue par le procédé de Schmidt a partir
de la famille (1,X,...,X™)

(a) Déterminer Py, Py et Py

(b) Pour tout k € [0,n], indiquer & quoi est égal vect(Fy, Py, ... ,Py). En déduire deg(Py)
(c) Justifier que < Py, P;’ >= 0 pour tout k € [0,n]

(d) En déduire que P,(0)* =1

ALG 281 3 3
Pour A et B éléments de M3(R), on pose < A,B >=>" >~ a;;b;;.
i=1j=1
010
On note F' 'ensemble des matrices antisymétriques, et M la matrice M = [0 0 1
000
1. Détermier une bon de F.
2. En déduire le projeté orthogonal de M sur F
ALG 282
On considére £ = R* muni de sa base canonique B = (i,5,k,l) et de son produit scalaire usuel.

T+y+z+t =0
T+2y+32+4 =0
1. Montrer que F' est un plan vectoriel, puis déterminer une bon de F’

On note F le sev de R* définie par les équations

2. Déterminer F+. (On donnera des équations, une base et sa dimension)
3. Ecrire la matrice dans la base B de la projection orthogonale sur F'

ALG 283

Soit F un espace euclidien de dimension n et p un projecteur orthogonal de F de rang r. (cad que p est
la projection orthogonale sur un sev F de dimension r)

On note B = (ey,...,e,) une bon de E et A = (a;j)1<ij,<n la matrice de p dans la base B

1. Montrer que Vz € E, ||p()]|* = (p(x),z)
n
2. Montrer que Y |[p(e;)||* = 7, et en déduire que Y. af; =r

i=1 1<i,j<n

ALG 284
On considére R* muni du psu. On note (,7,k,l) sa base canonique.

On considére F = vect(i + j,k — 1) et T = (1,2,3.4) =i + 2] + 3k + 41
1. Déterminer le projeté orthogonal de Z sur F' ainsi que son symétrique orthogonal par rapport & F'
2. Déterminer une bon de F*

ALG 285

Pour tous (a,b,c) € R?® on note f(a,b,c) = f[—l,l] (sin(t) — a — bt — ct?)%dt
1. Interpréter f(a,b,c) en terme de distance

2. Justifier que le minimum de f(a,b,c) est fil sin?(t)dt — 6(sin 1 — cos 1)2.
Pour quelle(s) valeur(s) est-il obtenu?

ALG 286

Soit F = R?® muni du produit scalaire usuel et de la base canonique (;JJ;L et F'le plan d’équation z —y + z -
Déterminer la matrice, dans la base canonique de F, de la projection orthogonale sur F.

(on pourra s'intéresser & la projection sur F'4)

ALG 287
Soit E = C%([0,1],R).
On note:
e G={gcE,¢" =g}
e H={he E h0)=hn(1) =0}
1

.« <fg>= / FO)gt) + (g (Bt

. Justifier que (ch , sh) est une base de G

. Veérifier que H est un sev de F

. Vérifier que < , > est un produit scalaire sur F

. Montrer que Vf € E,Vg € G, < f,g >= f(1)¢'(1) — f(0)¢'(0)
. Montrer que H = G+

. Soit f € E.
Déterminer le projeté orthogonal de f sur G

S U = W N =

ALG 288
1. Montrer que E = {f € C'([0, + oo[,R), f(0) =0, f bornée} est un espace vectoriel

()

2. Montrer que pour tout (f,g) € E?, I'intégrale / 1®) ———=dt existe

)

3. Montrer que ¢ : (f,g) — / fidt est un produit scalaire sue F

K0 [ L1000+ 1050,

o ,—at __ ,—bt b
5. On note G = vect(g1,92) ott g : t — 1 —e~*. On admet que / %dt =In—
0 a

4. Montrer que V(f,g) € E?, / f

Déterminer la projection orthogonale de f € F sur G

ALG 289 r+y =4
Soit a un parameétre réel. On considére le systéme (S) : ¢ —z—y =a
T—z =1
4 1 1 0 1 0
1. Montrer que le systéme (S) est compatiblessi | a | e< | =1|,[-1],]0] >=<|-1|,(0]| >
1 1 0 1 0 1
2. On suppose que a = 2, on souhaite fournir une solution approchée du systéme.
4 1 0
(a) Quel est le projeté orthogonal du vecteur | 2 | sur le plan vect([ —=1],{0])?
1 0 1

(b) En déduire les solutions approchées du systéme. Combien en existe-t-il?



ALG 290
On considere lespace euclidien (E = M, (R), <, >) défini par < A,B >= tr(A".B)
On note A, [resp. S,] espace vectoriel des matrice antisymétriques [resp. symétriques| d’ordre n

ALG 297
Soit E un espace euclidien, f € O(F) et g = idp — f.
1. Montrer que Im g et ker g sont orthogonaux et supplémentaires dans

1. Montrer que S, et A, sont orthogonaux

2. On rappelle que M,(R) =S, ® A,.
Donner pour toute matrice B € M,,(R) la décomposition associée.

2. Pour tout ¢ > 1 on note S, = %(idg +f+ P4 fh
(a) Donner une expression trés simple de S,(#1) pour &1 € ker(g)
(b) Donner une expression trés simple de S, (%) pour Z» € im(g)

3. Déterminer la projection orthogonale d’une matrice B € E sur lespace S,
1 2

3 4 ALG 298
1. Montrer que, sur R3[X] , < P,Q >= f:rll P(t)Q(t)dt définit un produit scalaire.
2. En déduive  min__ [/(# — at® — bt — ¢)?dt (on trowvera 8/175)

(c) Justifier avec soin que lim S, est une certaine projection dont on donnera les éléments
g—r+o00

Application: cas ou B =

1
4. Montrer que d(B,S,) = §||B — BT|| pour tout B € E

a,b,c)ER3
ALG 291 (inégalité de Bessel) (@b
Soit (E, <, >) un espace préhilbertien et (€, ...,6,) une famille orthonormale. ALG 299
On note F = vect (€, ... ,€p) 1. Montrer que, sur Ro[X] , < P,Q >= f:rll P(t)Q(t)dt définit un produit scalaire.

2. Déterminer le projeté orthogonal sur F' = vect(1,X) de X2
3. En déduire min j:l(tz +at + b)2dt
(a,b)eR2

1. Montrer que pour tout Z € E, ||pr(Z)||* < ||7]]?

P
2. En déduire que pour tout ¥ € E, Y < &, >2< ||Z]|?
=1

ALG 300
1. Montrer que, sur R3[X] , < P,Q >= f_+11 P(t)Q(t)dt définit un produit scalaire.
2. Déterminer le projeté orthogonal sur F' = vect(1,X,X?) de X3

ALG 292

1. Déterminer la matrice dans la base canonique de R? de la symétrie orthogonale par rapport au

plan P; d’équation 2z —y + z = 0.

2. Méme question avec P, d’équation y = 0 ALG 301
Soit n > 2 un entier et A € M,,(R) une matrice symétrique.
On identifie dans cet exercice les vecteurs de R™ avec les matrices unicolonnes M,, 1 (R)
ALG 293 Pour tout (X,Y) € M, 1(R)? on pose ¢(X,Y) = XTAY
Soit 7 # 0 et A # 0. On définit Papplication f par f(Z) =Z+ A< Z,0> U
Déterminer une CNS sur A pour que f € O(FE). Reconnaitre alors Papplication f.
(on pourra déterminer E;(f) et E_1(f))

3. Etudier la composée de ces deux symétries orthogonales

1. Montrer que ¢ est une forme bilinéaire symétrique

2. Dans cette question, on prend A = (; i) avec A € R

ALG 294
Soit (E,(])) un espace euclidien et f : E — E une application linéaire qui conserve 1'orthogonalité.
Cest a dire que ¥(Z,7) € E2, (ZF|§) =0 = (f(D)|f(§) =0

1. Pour @ et ¥ vecteurs unitaires, calculer (@ + v]d — ¥)

T
(a) Vérifier que (;) A (;) = (v +2y)2+ (A —4)y?
(b) En déduire que ¢ est un produit scalaire sur R? ssi A > 4

3. Dans cette question, on suppose que A est diagonalisable et on écrit A = PDP~!

2. Montrer que pour @ et U vecteurs unitaires, on a || f(@)|| = || f(0)]] (a) Dans le cas particulier ot P — 1 1 ) ot D — (1 0

3. En déduire qu'il existe « € RT,VZ € E, ||f(Z)|| = o||Z|| I -1 00
non nul X tel que AX =0 et en déduire que ¢ n’est pas un ps

), sans calculer A, donner un vecteur

4. Montrer qu'il existe g € O(E) tel que f = a.g
(b) Dans le cas général, montrer que si A posséde une valeur propre négative ou nulle alors ¢ n’est
ALG 295 pas un ps.
Dans R?® muni du psu, on considére la réflexion échangeant @ = (1, — 2,3) et 7 = (—2,3,1). ALG 302

Indiquer le plan par rapport auquel s’effectue la réflexion. Soit (B, < , >) un espace euclidien et B — (@1, ...,) une bon.

On considére un vecteur non nul @ = a,€; + - - - + a,Cp.

On note D la droite dirigée par a et f la projection orthogonale sur D.
1. Calculer f(€;) pour tout j € [1,n]

ALG 296 (trés classique)
Soit (ai;) € M, (R) une matrice orthogonale.
Montrer que | Y~ a;| <n

S SEE B . ] L ) . . 2. En déduire la matrice M = Matg(f).
indication: On considérera (€1, . .. ,€,) la base canonique de R"™ qui est orthonormée pour le produit scalaire a
usuel, ainsi que [ ’endomorphisme canoniquement associé a A. On pourra alors montrer que >  a;; a
1<i,j<n . . Sa e s s . . 2
. . L L . . N Comment pourrait-on simplement I’écrire a 'aide de la matrice unicolonne A= | |7
est le produit scalaire entre €1 + - - - + €, et un autre vecteur. .. puis appliquer une fameuse inégalité! :
aﬂ,



ALG 303

Soit (E, <, >) un espace euclidien. et F' un sev de E.
On note B [resp. B'| une bon de F [resp. F|.
Montrer que BU B’ est une bon de E

ALG 304 (la seule valeur propre réelle possible d’une matrice antisymétrique est 0)
On considére R™ muni de sa structure euclidienne canonique.

On identifie R* et M, 1(R)

Soit A une matrice antisymétrique réelle d’ordre n.

On suppose que A posséde une valeur propre réelle A, et on note X un vecteur propre associé.
En calculant de deux maniéres différentes X” AT AX, montrer que A = 0

ALG 305
On considére R™ muni de sa structure euclidienne canonique.
On identifie R* et M, 1(R)
Soit A € M,(R). Nous allons montrer que ker(AT.A) = ker A
1. Montrer I'inclusion évidente.
2. Soit X € ker(ATA). Déterminer ||AX||? et conclure
3. En déduire que rg A = rg(ATA)

ALG 306 o
Soit A = (a;;) € On(R). Montrer qued_ Y- a?; =n
i=1j=1
ALG 307 V2 o -B
Soit la matrice A = 1/\/5 71/\/5) 8
0 v 28

Pour quelle(s) valeur(s) de a, 8 et vy cette matrice est-elle orthogonale?

ALG 308
Soit A une matrice antisymétrique d’ordre n. On pose B = (I, + A)(I, — A)
Montrer que B est une matrice orthogonale.

-1

ALG 309
Dans R? muni du psu,
on considére @ un vecteur unitaire et 'application VZ € R?, f(Z) = G A 7+ < &, > &

1. Montrer que f est un endomorphisme orthogonal
2. Ecrire la matrice de f dans une bond bien choisie, et en déduire la nature de f

ALG 310 (rotation=produit de deux réflexions)
On considére B = (€},63,€3) une bond de E.
On note:
[ ] ﬁl = 51
® iiy = cos (v.€] + sin ov.€5 ou «v est un réel fixé.
e P [resp. Py| le plan de vecteur normal 7i; [resp. i
e 51 [resp. o la réflexion par rapport au plan Py [resp. Ps|

1. Ecrire les matrices dans la base B de s, s3 et s50 81
2. Reconnaitre 'isométrie vectorielle s, 0 51
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ALG 311
On se place dans R™ muni du produit scalaire usuel, et on identifie. . . .
Le produit scalaire sera noté (|) et on a donc (X|Y) = XT.Y)
Soit A une matrice inversible de M,,(R)
1. montrer que les valeurs propres de B = AT A sont positives.

2. montrer que si la famille { X1, ..., X, } est une famille orthonormale de R", et si la famille { AX7, . ..

est une famille orthogonale, alors chaque X; est un vecteur propre de B

ALG 312 .
On considére E = M,,((R)) muni du ps < A,B >= Y 3" a;;.b;; = tr(AT.B)
i=1j=1
On note H = {M = (my;) € E| > Y my; = 0}.
i=1j=1
Déterminer H* (on pourra considérer la matrice Attila. .. )

ALG 313 2
On note E = Ry[X] muni du produit scalaire < P,Q >= > P(:).Q(:)

i=—1

Appliquer le procédé d’orthonormalisation de Schmidt a la famille (X?2,X,1)

ALG 314
On considére R* muni du psu. On note B = (i,5,k,l) sa base canonique.

On considére F = vect(i + j,k — 1 .

AX

1. Déterminer la matrice dans la base B de la projection orthogonale sur F, puis de la symétrie

orthogonale par rapport a F
2. Déterminer une bon de F*

ALG 315 (endomorphismes antisymétriques)
Soit (F,.) un espace euclidien et f € L(E) tel que Vo € E,f(z).x =0
On considére B = (ey, ... ,e,) une bon de E, et A = Matgf

1. Montrer que Vo € ENy € E,f(z).y = —z.f(y)

( on pourra considérer f(z +1y).(x +y))

. Montrer que A est une matrice antisymétrique
. Montrer que Im f et ker f sont supplémentaires orthogonaux
. Montrer que Im f est stable par f et que la restriction de f a Im f est bijective

T o= W N

. Dans le cas ott E = R?, on veut montrer qu’il existe w € E tel que Vz € E, f(z) = w A .
On note B = (i,j,k) une bond de F
et on considére w = a.i+b.j +ckainsique h: £ — FE
r — wWwAT
(a) Ecrire la matrice de h dans la base B
(b) Justifier qu’il existe w € E tel que Vo € E, f(z) =w A x.

Dans R? muni du psu et de sa base canonique, on considére une rotation f tq

ALG 316

1. Déterminer ’axe de la rotation. Donner un vecteur w qui dirige I'axe de rotation
2. On note P = D+

(a) Déterminer le projeté orthogonal de ¢ et celui de k sur P

(b) Déterminer une bond (u,v,w) telle que i € vect(u,w)

(¢) Sachant que r(u) = cosf.u + sin f.v, déterminer I’angle 6 de cette rotation.

12
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ALG 317 (endomorphismes symétriques)
Soit (E, <, >) un espace euclidien et f € L(E) tel que V(z,y) € E?, < f(z),y >=<z,f(y) >
1. Montrer que (ker f)* = Im(f)
2. On suppose que E; @ Fy = E et on note p la projection sur E; parallélement a Ey
(a) Montrer que si p est une projection orthogonale alors V(z,y) € E?, < p(z),y >=< x,p(y) >
(b) Etudier la réciproque
3. On note A la matrice de f dans une base orthonormée B de E.
Justifier que A est une matrice symétrique
4. En déduire que f est diagonalisable et qu’il existe une base orthonormée de E formée de vecteurs
propres de f

ALG 318 -
Donner la matrice dans la base canonique de R? de la rotation d’axe dirigée par i — 2j et d’angle 5

ALG 319 2003
. , . . s . 0230
Soit f 'endomorphisme canoniquement associé a la matrice M = 0320
300 2

1. Que dire de f7
2. Montrer qu'il existe des projections orthogonales p et g, et deux réels A et u tels que:

f=Ap+uq poqg=0 p+q=id

ALG 320
Soit A une matrice symétrique réelle d’ordre n.
On note A\; < Mg < ... <\, ses valeurs propres comptées avec leurs multiplicités.
Avec la notations habituelles, on introduit les matrices P et D telles que A = PDPT.
Y
Pour toute matrice unicolonne X, on pose Y = PT. X =
Yn
1. Montrer que ||Y|| = || X]|
n
2. Montrer que XTAX = > \y?
i=1
3. En déduire que pour toute matrice unicolonne X on a A]|X|> < XTAX <\, || X|[?

4. On suppose que A1 < Ag et que A\, o < A1 = Ay.
(a) Déterminer les X tels que \||X||> = XTAX
(b) Déterminer les X tels que A\, || X||> = XTAX

ALG 321

Dans R?, on considére f la rotation d’axe D = vect u avec u unitaire et d’angle 6.
Montrer que pour tout z € R® on a

f(z) = (1 —cosh). < z,u> .u+cos(f).x +sin(f).u Az

ALG 322
Soit £ un espace euclidien et f € O(E).
Montrer que f est diagonalisable ssi f? = idp
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ALG 323
Soit B une bon de E, f € L(E) et A= Matgf.
Soit 7 # 0 un vecteur de E:
e on note N sa matrice unicolonne associée dans la base B
e on note D = vect 71 la droite dirigée par 7
e on note H = D+ (H est donc un hyperplan de vecteur normal i)

Nous allons montrer que: ‘H est stable par f ssi IV est vecteur propre de AT‘

1. On suppose que N est vecteur propre de AT

(a) Montrer qu’il existe A € R tel que VX € M, 1(R), NTAX = ANTX

(b) Traduisez en terme de vecteurs et endomorphismes la propriété ci-dessus

(c) En déduire l'implication (Z € H = (%) € H)
2. On suppose que H est stable par f.

(a) Expliquer pourquoi il existe A € R et Z € M,,;(R) tels que ATN = AN + Z et NTZ =0
(b) Calculer de deux maniéres différentes ZTATN, et en déduire que Z = 0

(¢) Conclure

1 11
3. Application: déterminer tous les sev stables par la matrice A= 1 1 1
-1 11

ALG 324

Les espaces R™ et RP sont munis de leurs structures euclidiennes usuelles.

Soit f € L(R™"R?) et b € RP

On note respectivement A et B leurs matrices dans les bases canoniques adéquates.
On suppose que b & Im(f).

On souhaite déterminer les @ € R™ tels que || f(z) — b|| soit minimale.

1. Montrer que ce probléme de minimisation posséde au moins une solution z, qui est caractérisé par
f(zo) — b e (Im(f))*

2. Montrer que la condition ci-dessus équivaut & la condition A”AX, = ATB

3. Dans le cas ot AT A est inversible, donner une expression simple de X,

ALG 325 5 0 -10
On considére la matrice G = T -8 5 6
°\6 -10 8

On note g 'endomorphisme de R? canoniquement associé.

1. La matrice G est-elle orthogonale?

V2

2 1
2. On note ] = g(L —1,0,) dy= ?(1,17 —4) et uz = §(27271)

Veérifier que B = () ,il,i3) est une base orthonormée directe de R? telle que i3 € ker g et que dans

3/5 4/5 0
cette base Matg(g) = | —4/5 3/5 0| =G
0 0 0

3. Montrer que g est la composée d’une projection orthogonale et d’une rotation.

14



ALG 326
Apres avoir vérifié que les matrices sont orthogonales, déterminer la nature et les éléments géométriques
des endomorphismes de R?® canoniquement associés aux matrices suivantes:

001 0 0 1 Ccos 0 sina 1 2 2 1
A=1[1 0 0 B=|-1 0 0 C= 0 -1 0 ng -2 1 2
010 0 -1 0 —sina 0 cosa 1 -2 2
1 8 1 —4 1 -2 2 -1 1 -1 3 —v6
E = 3 —4 4 -7 F=-12 1 -2 G= 1 3 -1 —v6
1 8 4 -1 -2 =2 V6 V6 2
1 2 2 -1 1 -1 2 2 cosa 0 sina
H=-|-1 2 2 1= 3 2 2 -1 J = 0 1 0
2 -1 2 2 -1 2 —sina 0 cosa

ALG 327
Soit (F, <, >) un espace euclidien.
On considére s, la symétrie orthogonale par rapport a 'hyperplan (vect )% ot 7@ est un vecteur unitaire
donné. Une base orthonormale B étant fixée, on note N la matrice unicolonne des coordonnées de 7i dans
la base B.
1. Montrer que la matrice de s dans la base B est I — 2NN”
2. application: On suppose que dim F = 3 et on note (7,;12) une bon de E.
On considére le plan d’équation x +y — 2z = 0.
Ecrire la matrice dans la base (;,57/5) de la réflexion par rapport au plan P

ALG 328 344 5 4

Justifier que la matrice 5 147 -1 est inversible.
4 -1 -2+

ALG 329

1. Reésoudre dans R I'équation 2" = 1 avec n € N*
2. Résoudre dans C I'équation z" =1 avec n € N*
3. Soit M une matrice symétrique réelle telle que M?°* = I,. Que dire de M??
4. Soit M une matrice symétrique réelle telle que M?°% = I,,. Que dire de M ?

ALG 33 23 2 —4

SoitA:§ 2 26 2 |.(On trowve xa(X)=X>—-8X2+21X — 18 = (X —2)(X —3)2.)
-4 2 23

Diagonaliser A en utilisant une matrice orthogonale de déterminant positif.

(Sera-ce plus simple de déterminer déja E3 ou Ey7?)
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ALG 331 (méthode des moindres carrés)

On considére n points du plan A;(z;,y;). On souhaite déterminer la droite D d’équation y = ax + b qui
minimise la somme des carrés des distances verticales entre un point et la droite,

c’est & dire on souhaite déterminer

n

inf i — ax; — b)?
(a};l)le]RQ i:1 (yz ax; )
On se place dans £ = R"™ muni du psu.
Y1 1 1
On note Y = ainsique X =| ¢ |etU=[":
Yn Ty 1

On note F' = vect(X,U) On suppose que les x; ne sont pas tous égaux (hypothése (H))
1. Interpréter géométriquement ’hypothese (H). Que vaut dim F'?
2. On note apX + boU le projeté orthogonal de Y sur F.
(a) Montrer que <Y — aoX — byU,X >=<Y — aqpX — bU,U >=0 (x)
. e X2 <UX> a) (<Y X>
(b) Montrer que matriciellement (x) s’écrit (< vx s oE ) \e) ey

=M
(c) Calculer det(M) et justifier que, grace a 'hypothése (H), on peut affirmer que det(M) # 0

n n n
ag- Y, @} +bo- Y @ > Ty
i=1 i=1 i=1

n n
ag.. Y, ;i +n.by =>
= i=1

i=1

(d) En déduire que (ag,by) vérifie le systéme

(e) Il est d’usage de noter en Statistique

1 n 1 n 1 n 1 n
o= T My =D W pe=— D @ eb ey =)
i=1 i=1 i=1 i=1

Montrer que |ay = Lﬂfﬁ‘y et by = fiy — ag.fls
Ha2 — Ky

[FIN des exercices ALG !]
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‘ QUELQUES CORRIGES ‘

Nous allons utiliser dans cet exercice le théoréme suivant d’intégration:
Soit f une fonction continue et de signe constant le segment [a,b]. Alors:

i) si f est positive alors fabf >0
i) si f est négative alors fab <0
iii) fab f=0ssi f est (identiquement) nulle sur [a,b]

e On note F = C'([0,1],R) et on pose pour tout f et g de E: < f,g >= f(0 +f0 g
e Le crochet est linéaire a droite.
En effet, soient (f,91,92) € R¥et A€ R on a

< FAg+gr 5= £(0).(Aga(0) + g(0)) + / P01+ ) = M(0)g1(0) + £(0)g(0) + / Mg+ Fgh

Or par linéarité de 'intégrale on peut écrire

o1 r1 r1
/ MG+ g = A / Fd.+ / s
0 0 0

On obtient donc

< P02 >= A (0)g1(0)+£(0)ga(0)+A / P+ / £ = A(f(0)g1(0)+ / Fd)+F(0)g2(0)+ / 1'd,

Au final on a donc établi que
<fAg+ g >=A< fig1 >+ < fgoa>

e Le crochet est symétrique.
En effet, soit (f,g) € E2. Comme la multiplication interne dans R est commutative on a

/f —< fg>

On a prouvé que le crochet est symétrique et linéaire a droite, il est donc aussi linéaire & gauche.

< 0.f >=g(0)f(0) + /gf £(0

e Le crochet est positif
En effet, soit f € E.
Comme f est une fonction & valeurs réelles, on a f(0)2 > 0
Comme f’ est une fonction continue sur [0,1], et a valeurs réelles, on peut dire que (f’)* est
une fonction continue sur [0,1] a Valeurb positives. Or I'intégrale d’une fonction positive est posi-
tive(cf.théoréme ci-dessus) donc f 2>0
On a prouvé que < f,f > était la somme de deux termes positifs, donc < f,f >> 0

e Le crochet est défini.
Soit f € E tel que < f,f >=0.
On a donc

1
fo2+ [ (7 =0
0
Une somme de termes positifs est nulle ssi chaque terme est nul, on a donc

JO)y=0et [}(f)?=

17

La fonction (f")? est continue et positive sur [0,1], et fol(f’(t))2 = 0 donc d’apres le théoréme de
I’intégrale nulle, on peut affirmer que (f’)? est nulle sur [0,1], c’est & dire que f’ est la fonction
nulle sur le segment [0,1].

Ainsi f est une fonction constante sur [0,1], et comme f(0) = 0, on a bien montré que f était la
fonction constante nulle sur [0,1], c’est & dire f = 0. cqfd

261 e [] s’agissait de penser a la quatriéme question de I'exemple 9 corrigé en classe.

e On considére 'espace préhilbertien réel (E, <, >) avec | E = C°([a,b],R) | et

<,> E* — R

(g,h) — < g,h >:/ gh
Jlah)

e Soit f une fonction continue et strictement positive sur [a,b]

1
On considére les fonctions g = /f et h = —

Ces fonctions sont bien définies sur [a,b] et clies y sont continues, ce sont donc deux éléments de E.
En appliquant I'inégalité de Cauchy-Schwartz aux fonctions g et i cela donne

lgll-IIAll = | < g,k > |
Comme les deux membres de cette inégalité sont positifs, elle équivaut a
lglPIIfIP > | < g.h > [P =< g.h >?

p 1

L2 F et lIRlP =< hb>= [0 = ] 5

ot<g,h>:fabgh:fb1.dt:b—a
e On trouve ainsi que (f f) (f ) (b—a)?

e Le cas d’égalité correspond aux fonctions g et h liées.
Comme la fonction h # 0 ceci équivaut a dire qu’il existe un scalaire A tel que g = A.h,

b
o OrlglP =<g.g>=[ "=

soit encore qu’il existe un scalaire A tel que % = )\, c’est a dire f = A

Conclusion: ‘il y a égalité ssi f est une fonction constante‘

Soient Z et ¢ deux vecteurs d'un espace préhilbertien.
Commengons par remarquer que si = 0 I’équivalence est trivialement vérifiée.
On supposera donc dans la suite que 7 # 0
1. On suppose que & et ¢ sont orthogonaux.
Pour tout A € R, on a les vecteurs & et Ay qui sont orthogonaux, et d’aprés le théoréme de Pytha-
gore on peut affirmer que ||Z+ Mj||? = ||Z]|* + ||M\7]* = ||7]]>
Et donc on obtient bien que VA € R, ||Z + Ay]| > ||Z]|

2. On suppose que VA € R, [|Z+ A\g|| > ||Z]]-
Ce qui équivaut a dire, les deux membre étant positifs, que ||Z + \7][? > ||Z||2.
on sait que

—

|Z+ M =< T+ AT+ A\ >=< T,8 > +2A < T, > + N2 < ,if >



La condition équivaut donc a
VAER N <F7> 422 < T, >>0

Comme § # 0 on a < §§ ># 0, et ainsi Uapplication A — A2 < §§ > 42\ < Z,7 > est un
polynéme du second degré qui est toujours positif, il s’agit donc d’un polynéme du
second degré qui ne change pas de signe sur R: son discriminant est forcément inférieur
ou égal a zéro. Or A =4 < #5 >2> 0. On a donc forcément < Z,if >= 0: les vecteurs ¥ et §f
sont forcément orthogonaux!

265 1. e Soit ¥ € F*.
Comme chaque €; est un élément de F, on a < 7,e; >= 0.

n —
Ainsi, on trouve que ||Z||* = Y < #,& >?= 0. Et donc & =0
i=1

On a donc prouvé que F+ c {0}

e l'inclusion réciproque est immédiate car on sait que F* est un sev.
Conclusion: F*+ = {0}‘

e Comme FE est un espace euclidien et que I est un sev de F on sait par théoréme que
F @ F* = E. Comme F*+ = {0}, on peut en déduire que F = E.

e On a donc E = vect(€y,...,e,).
La famille F = (&}, ...,€,) est ainsi une famille génératrice de E avec card(F) =n = dim E,
on peut affirmer que cette famille est une base de F.

Conclusion: (€1,...,6,) est une base de £

2. On va suivre I'indication donnée.
Soient T et i deux vecteurs de E quelconque.

e On sait d'une part que
|2+ =12+ g +2<Zg> (1)

e D’autre part, dans cet exercice, on a

n
lE+31° =Y <@+§é >’
i=1

e Or
<THGE >M= (T8 >+ <6 >) =< 5,6 >+ < 7,6 > +2 < T.6;, >< 7,6 >
Ainsi
n n n n
N o<@4 e >=Y <TE ST+ < e > H2Y < BE >< §E >
i=1 i=1 i=1 i=1
d’ou

n
17+ = 17+ 171 + 23 < 28 ><ga > (2)
i=1

e En faisant (1) -(2), on trouve que | < Z,§ >= Y < Z,&; >< §,6; >

-

i=1
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On va faire une discussion suivant (@,A) € E x R
o si(@,\) = (6,0), tout vecteur ¥ de E est solution!
e sid@=0et A #0, aucun vecteur & de F n’est solution!
o sid#0.

a est solution.

— On commence par déterminer un  qui marche. Il est clair que ¥y = TG
a

On a les équivalences:

(@,7) = A & (@.7) = (@,70) & (@7 — To) =0 & T — Ty € G-

On a donc I'ensemble des solutions cherché qui est | {7 + 7|7 € a*}

~ on reconnait un espace affine de direction @+ = (vect @)t
— @t = (vect @)t est un hyperplan de F,

271 1. Vérification classique faite en classe

2. e Montrons que P et Z sont orthogonaux.
Soit f € P et g € Z. On a, en effectuant le changement de variable § = —t dans U'intégrale:

<fo>=[ FOICE / 100 [ F(=8)g(=6)dp

Comme f est paire et une fonction impaire cela donne

<fa>= [ 1@ = [ rO00) =< 9>

Ce qui prouve que < f,g >=0!
remarque importante:
on sait que par définition P+ est 'ensemble de tous les vecteurs qui sont orthogonaux a tout
vecteur de P. Le calcul précédent montre que les vecteurs de Z sont des vecteurs de P+, mais
il ne prouve pas que ce sont les seuls vecteurs a avoir cette propriété.
A ce niveau de la démonstration on sait seulement que Z C P+
e Montrons maintenant que P et Z sont supplémentaires dan F
i) Comme P et Z sont orthogonaux on peut affirmer qu'ils sont en somme directe.
ii) Montrons que E =P +7Z
(c’est & dire, montrons que tout élément f € E s’écrit g+ h avec g € P et h € T)
Pour cela on raisonne par analyse-synthése.
Soit f une fonction de E:
— Analyse: on suppose que f =g+ havecge Pethel
On a alors pour tout ¢t € [—1, + 1],
f(t) = g(t) + h(t) et f(—t) = g(=t) + h(—t) = g(t) — h(t)

En faisant la demie-somme et la demie-différence cela donne

N (OR (
wel-nen 8" T 020
h,(t) :'f

— Syntheése: on considére les fonctions g et h définies ci-dessus.

fEO+F(=(=0) - fED+ @)

—gePcarVtel[-1,+1],g(—t) = 5 = 5 =g(t)
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~heTcarVte|-1,+1],h(-t)= 1= _éf(_(_t)) = f(_t); 10 _ —h(t)
~ f=g+hcarVte[-1,+1],9(t) + h(t) = f(tHQf(_t) +f(t)_2f(_t) = f(t)

On a bien justifié qu'il existe (g,h) € P X Z,f =g+ h

e Montrons I’inclusion P+ c T
Soit f € P+
Comme Pt C E et que E = P + Z, on sait qu’il existe g € P et h € T telles que f = g + h.
Considérons alors le produit scalaire < f,g >
Ona< fg>=<g+hg>=<gg>+<hg>O0r<fg>=0cargePetfcP et
< gh >=0car g € P et h € Z. Il nous reste donc < ¢g,g >= 0, ce qui équivaut a dire que
g =0, et ainsi que f = hl. Ceci prouve que f € Z

3. pour éviter des confusions, nous allons noter s (plutoét que g) 'application s : f — f
(a) premiére idée:
on va montrer que s o s = id puis utiliser ce que 'on sait sur les endomorphismes involutifs!
e Onasos=id.
En effet pour toute fonction f de E et tout = € [—1, 4 1] cela donne

(so8)(f)(x) = s(s(f)(z) = f(=(=2)) = f(x)

De plus la linéarité de s ne faisant aucun doute, on a bien justifié que s est un endomor-
phisme involutif.
e On sait alors par théoréme que s est la symétrie vectorielle par rapport a ker(s — id)
parallélement & ker(s + id)
ker(s — id) est le sous-espace vectoriel des vecteurs invariants, c’est a dire les fonctions f
de E telles Vz € [-1,4+ 1], s(f)(z) = f(—z) = f(x). On reconnait I’ensemble P
De méme, on justifie que ker(s + id) =
e On vient de prouver que s était la symétrie vectorielle par rapport a P parallélement &
Z. Comme Z = P+, on peut affirmer que s est la symétrie orthogonale par rapport a P
(b) seconde idée: on utilise la décomposition trouvée a la question 2
Avec la décomposition de la question 2, en écrivant f = g + h,
cela donne Vz € [-11], f(z) = f(—z) = g(—2z) + h(—z) = g(z) — h(z) = (g — h)(z)
Et ceci prouve que f: g—nh
E=P&P" — E
f=9g+h +— g—h
On reconnait bien la symétrie orthogonale par rapport a P

Ainsion a |s

Nous allons utiliser la formule de la réflexion de la méthode 1 du polycopié.
Si 71 est un vecteur unitaire orthogonal & 'hyperplan H, on a pour tout

—

TeE Sy@)=2—-2<Zi>f

. En appliquant cette formule on trouve respectivement

O -1 2 =2

21 — k 1
Tt sy P R
V6 21 2

o

3
0
0
1
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3.

4.

294

3.

298

Notons 1 [sq] la premiére [seconde| réflexion
Notons r = sy 0 81

e Déja on sait que r est une rotation car c’est la composée de deux isométries vectorielles et que
det(r) = det(sz). det(s)) = (—1)2 =1

-1 2 =2
e La matrice de r dans la base (;,;,E) est Ay A) = 3 -2 =2 -1
-2 1 2
On déroule alors la méthode standard et on trouve que ‘ r = 89 0 81 est la rotation d’axe i— 2k ‘
-2
cosf = T
et d’angle 0 tel que
5
sinf = %

Il s’agit d’un angle qui est dans l'intervalle |7 /2,7, il s’agit donc de w
(mais ce n'est pas égal a arcsin(v/5/3) ni arctan(—v/5/2)!)
remarque: si on s’intéresse & ¢ = s 0 sp on peut bien sir suivre le méme procédé.
Cependant il est intéressant de remarquer que ¢ = !
En effet, comme s; est une réflexion on a s; o 9, =id c’est & dire 5;1 =g; pouri=1ou?2
Onadonct=s 08 =s'0s' = (sp0s)t=r"!
i—

2k) et d’angle — arccos(—2/3)‘

Ainsi ‘t = 51 0 5y est la rotation d’axe vect(i

1. Soient 4 et ¥ deux vecteurs unitaires.
En développant par bilinéarité, on a (@ + v]d — 0) = (d|d) — (¢

) =1-1=0

. Soient % et ¢ deux vecteurs unitaires.

Comme les vecteurs 4+ ¥ et i — ¥ sont orthogonaux, et que f conserve le produit scalaire, on peut
affirmer que (f(d+0)| f(d—¥) = 0. Or f est une application linéaire, donc (f(@)+f(v)|f(@)—(v) = 0.
Par bilinéarité du produit scalaire, en développant, on trouve (f(@)|f(@)) = (f(0)|f(7)), et donc
en prenant la racine carrée: || fa)|| = ||f(V)||!
e Nous avons montré a la question précédente que "les images des vecteurs unitaires avaient
tous la méme norme”. Notons a > 0, la norme commune & toutes les images des vecteurs

unitaires.

e Comme f est une application linéaire on a f(0) = 0, et donc Dégalité || f(Z)]| = «||Z|| est bien
vérifiée dans le cas ou &' =0

e Soit & un vecteur non nul.
Posons § = 7 || Comme ¢ est un vecteur unitaire, on a ||f(7)|| = «, c'est a dire que
[ f (H—;:HH = a. Par linéarité de f, le scalaire ﬁ sort de f, et il sort ensuite de la norme en
valeur absolue...mmais comme une norme est toujours positive, on aboutit a ”ﬂ” [If(@)]] =
Ce qui donne bien || f(Z)|| = «||Z]|

e sia =0, on a pour tout vecteur Z de E, ||f(Z)]| = 0 et donc f(&) = 0! f est donc I'endo-
morphisme nul: il peut donc s’écrire 0.g ot ¢ est un endomorphisme orthogonal quelconque

de E
e si o # 0. Considérons I'endomorphisme ¢ défini par g = = f
En reportant dans 3, et en simplifiant par o # 0, on arrive & [lg(D)|| = ||Z]| pour tout vecteur

Z de E. Ceci prouve que g est un endomorphisme orthogonal!
On a bien prouvé que f = a.g avec g € O(E): g est donc la composée d'une homothétie et
d’une isométrie vectorielle! (c’est une similitude)

1. fait en classe
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2.

3.
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1
e On remarque que < 1,X >= / t.dt = 0.
-1
La famille (1,X) est donc une base orthogonale de F' = vect(1,X)

[11]]? :/ +11.dt =2
-1

1
2
[1X1)2 :/ t2dt = =
-1 3

1
2
<1,X%>= / t2dt ==
1 3

1
< X, X? >:/ tdt =0

1
e La formule du projeté orthogonal donne

<1,X%> <X,X2>X7§

(X% = .
Pr(X) = e IXIE 72

e On sait que l'on va utiliser le théoréme de distance & un sev de dimension finie.
(et vue la question précédente, on se doute que ce sera d(X2,F) avec F = vect(1,X))
e On commence par remarquer que

1 1
m = min / (t* + at + b)%dt = min / (t* — ct — d)dt
(a,b)eR? | _4 (c,d)eR? | _4

On a écrit ensuite la chose habituelle

1
m = min / (t? — ct — d)*dt

(e,d)eR? ) _4

= min [|X?—cX —d|?
(c,d)ER?

= min_[| X%~ (cX +d.1)|]?
(c,d)ER?

min || X%~ P||?
Pevect(1,X)

min || X% — P||?
PEF

= (d(X*F))

On sait par théoréme que d(X?2,F) est atteinte pour un seul vecteur Py € F et Py est le projeté

orthogonal de X2 sur F., cad Py = pp(X) = é

2
Ainsi ;
m = (d(X*F))* = (d(X*R))* = |IX* = Byl = ||X* ~ |
avec
3 ! 3 B 9 B . 91"
X2-Z = t2—72dt:/ o3 St = |— — 32| =... =2
= Ji= [ @ gra= [ foaesam S oer g 0

1. Soit Z et ¢ deux éléments quelconques de E
On a par hypothése f(Z+79).(Z+9) =0
En utilisant la linéarité de f, puis la bilinéarité du ps, on arrive a f(Z).24 f().7+ f(Z).g+ f(§).y = 0
Comme f(Z).Z = f(7).y) = 0, on peut bien affirmer que f(Z).g = —z.f(J
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2. Pour tout & et ¥ dans F, on note X et Y les matrices unicolonnes associées dans la bon B.

Comme B est une bon, on sait que la matrice du produit scalaire est I,,.

On a donc f(Z).4 = {(AX)LY = 'X'AY et Z.f(§) = 'XI,(AY) = 'XAY (et donc —Z.f(¢) =
—XAY ='X(—-A)Y)

On peut donc affirmer que pour toutes matrices unicolonnes X et Y on a ‘X'AY = X (—A)Y.
D’aprés le lemme 1 du poly de cours sur les espaces euclidiens, on peut alors affirmer que ‘A = —A.
On a bien prouvé que A était une matrice antisymétrique.

. Soit Z € ker f et ¥ € Im f.

Comme i € Im £, il existe € E, f(f) = 7.
On a donc 4.2 = f(i).2 = —1.f(&) = —1.0 =
e montrons que Im f est stable par f.

Soit 7elmf CF
On a f(¥) € Im f de maniére évidente! cqfd! (rappel: on a toujours Im f2 C Im f)

0

e Considérons la restriction de f & Im f, c’est adire |g : Im f — FE
z — f(2)

e Comme g est la restriction d’une application linéaire & un sev, g est une application linéaire.
e Comme de plus Im f est stable par f, on a donc g qui est un endomorphisme de Im f. On
peut écrire |g: Im f — Im f .
i o— f(@)
o Il est évident que ker g = ker f NIm f. Or ces deux espaces sont en somme directe! On a donc
ker g = {0}
e g est un endomorphisme d’un sev de dimension finie,
on sait alors que g bijective ssi ker g = {0} !

e On a bien montré que g était bijective!

5. On suppose dim £ = 3. On note B = (;7,/?) un bon de E.

e Soit W € E fixé.
Nous allons écrire la matrice de I'endomorphisme h : Z — & A & dans la base B.
Notons (a,ch) lef coordonnées de i dans la base B.
On a w = ai + bj + ck. Et un calcul simple donne:
~ h(i) =cj — bk
h(j) = —ci + ak
h(E) = bi — aj

0 —c b

Ainsi la matrice de h dans la base Best | ¢ 0 —a
b a O

e Notons M la matrice de f dans la base B. D’apreés la question 2, on sait que ¢’est une matrice

0 p q

antisymétrique. M est donc de la forme | —p 0 1 | avec (p,g,r) € R?
—q —r 0

Considérons le vecteur w = —ri + qj — pE7 et l’application h qui lui est associé.

Par ce choix judicieux, on a Matgh = Matgf. On peut donc en déduire que f = h!

culz4y).(z+y) =0=ux).e+ul@)y +uly).e +uly)y =ulz)y +uly).x
. VI € keruVy € Eu(f).Z = —gu(f) = —§.0 =0
3. Imu? C Imu comme toujours! Imu et ker u sont orthogonaux, donc ils sont en somme directe, et

donc ker |y, = keruNImu = {6}
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