
2 Algèbre bilinaire

Produit scalaire

ALG 249
Montrer que < , >: (f,g) 7→

∫ +1

−1

f(t)g(t)
√
1− t2dt définit un produit scalaire sur E = C0([−1,+ 1],R)

ALG 250
Soit n ⩾ 1 un entier fixé.
Pour tous polynômes P et Q de Rn[X], on pose < P,Q >= P (0).Q(0) + P (1).Q(1)

1. Calculer < X2 − 2X + 1 , 3X + 2 >

2. Montrer que < , > est une forme bilinéaire symétrique
3. Montrer que < , > est positive
4. Calculer < X2 −X,X2 −X >.

En déduire que < , > n’est pas un produit scalaire sur Rn[X] lorsque n ⩾ 2

5. Montrer que < , > est un produit scalaire sur R1[X].
6. Déterminer une bon de R1[X]

ALG 251
On note E = R[X] et < P,Q >=

∞∑
n=0

P (n)Q(n)

2n

1. Montrer que la série ci-dessus est bien toujours convergente
2. Montrer que < , > est un produit scalaire sur E

ALG 252
On note E l’espace vectoriel des suites réelles 3-périodiques.
On pose

φ : E × E −→ R

(u,v) 7−→
2∑

k=0

(uk + k.uk+1)(vk + k.vk+1)

1. Montrer que E est un espace vectoriel. Donner une base de E

2. Montrer que φ est un produit scalaire sur E

3. Déterminer une bon de E pour le produit scalaire φ

ALG 253
Soit n ⩾ 1.

1. Montrer que sur E = Rn[X], < P,Q >=

∫ 1

−1

P (t)Q(t)dt est un produit scalaire

2. Montrer que la famille (1,X,3X2 − 1) est une famille orthogonale.
3. Justifier que pour tout (a,b,c) ∈ R3, on a∫ 1

−1

[
a.(3t2 − 1) + b.t+ c

]2
dt = a2.

∫ 1

−1

(3t2 − 1)2dt+ b2.

∫ 1

−1

t2.dt+ c2.

∫ 1

−1

dt

4. Déterminer une base orthonormale de R2[X]

ALG 254
Sur E = C1([0,1],R), on pose < f,g >= f(0)g(0) +

∫ 1

0

f ′(t)g′(t)dt. Est-ce un produit scalaire sur E?

1

ALG 255
Soient n et p deux entiers strictement positifs, et (a1, . . . ,ap) p réels distincts.

On pose E = Rn[X] et on considère l’application ϕ définie sur Rn[X]×Rn[X] par ϕ(P,Q) =
p∑

k=1

P (ak)Q(ak)

1. Montrer que ϕ est une forme bilinéaire symétrique positive

2. En considérant le polynôme R(X) = (X − a1)(X − a2) . . . (X − ap) =
p∏

k=1

(X − ak),

montrer que ϕ n’est pas un produit scalaire sur E lorsque n ⩾ p

3. Montrer que ϕ est un produit scalaire sur E lorsque n ⩽ p− 1

ALG 256
Soit (a,b,c) ∈ R3.
Pour tout x⃗ = (x1,x2) ∈ R2 et y⃗ = (y1,y2) ∈ R2, on pose Φ(x⃗,y⃗) = x1y1 + ax1y2 + bx2y1 + cx2y2.
Nous allons chercher une cns sur (a,b,c) pour que ϕ soit un produit scalaire sur R2

1. Justifier que Φ n’est pas défini pour (a,b,c) = (1,1,1)

2. Montrer que Φ est bilinéaire
3. Montrer que Φ est symétrique ssi a = b

Dorénavant, on suppose a = b

4. Montrer que Φ est positive ssi c ⩾ a2

(on pourra penser à une mise sous forme canonique)
5. En déduire que Φ est un produit scalaire sur R2 ssi a = b et c > a2.

Donner alors une bon de R2

ALG 257
Soit (E, < , >) un espace préhilbertien.
Soient (x⃗1, . . . ,x⃗n) une famille de vecteurs de E.

1. Montrer que

||x⃗1 + x⃗2 + x⃗3||2 = ||x⃗1||2 + ||x⃗2||2 + ||x⃗3||2 + 2. < x⃗1,x⃗2 > +2. < x⃗1,x⃗3 > +2. < x⃗2,x⃗3 >

2. Justifier que d’une manière plus générale

||x⃗1 + · · ·+ x⃗n||2 =
n∑

i=1

||x⃗i||2 + 2
∑

1⩽i<j⩽n

< x⃗i,x⃗j >

ALG 258 (dans un espace de fonctions, qui formalise les séries de Fourier)
Soit E = C0([0,2π],R) muni du produit scalaire < f,g >=

∫
[0,2π]

fg.
Pour tout n ∈ N, on note fn : t 7→ cos(nt) et gn : t 7→ sin(nt)

1. Montrer la famille F = (fp)p⩾0 est une famille orthogonale
2. Montrer la famille G = (gp)p⩾1 est une famille orthogonale
3. F ∪ G est-elle une famille orthogonale?

ALG 259
A l’aide de l’ICS, déterminer un majorant de |x+ 2y + 3z| sous la condition x2 + y2 + z2 = 1

ALG 260
On souhaite déterminer les réels x1,x2, . . . ,xn qui vérifient le système

{
x1 + x2 + · · ·+ xn = n

x2
1 + x2

2 + · · ·+ x2
n = n

.

Pour cela, on va se placer dans E = Rn muni du produit scalaire usuel noté < , >
On notera également x⃗ = (x1,x2, . . . ,xn) et y⃗ = (1,1, . . . ,1).
En utilisant l’inégalité de Cauchy Schwarz aux vecteurs x⃗ et y⃗, résoudre la question posée!
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ALG 261
Montrer que pour toute fonction f continue et strictement positive sur [a,b], on a(∫ b

a

f(x)dx

)
.

(∫ b

a

dx

f(x)

)
⩾ (b− a)2

Pour quelles fonctions f a-t-on l’égalité?

ALG 262
Soit x⃗ et y⃗ deux éléments de (E, < , >).
On va montrer que x⃗ et y⃗ sont orthogonaux ssi ∀λ ∈ R, ||x⃗+ λy⃗|| ⩾ ||x⃗||

1. Montrer que si x⃗ et y⃗ sont orthogonaux alors ∀λ ∈ R, ||x⃗+ λy⃗|| ⩾ ||x⃗||
2. On suppose que ∀λ ∈ R, ||x⃗+ λy⃗|| ⩾ ||x⃗||

(a) Justifier que ∀λ ∈ R, λ2 < y⃗,y⃗ > +2λ < x⃗,y⃗ >⩾ 0

(b) En déduire que x⃗ et y⃗ sont orthogonaux

ALG 263 (un exemple juste destiné à revoir une formule!)
Soit n ⩾ 1 un entier fixé.

Pour tous polynômes P et Q de Rn[X], on pose < P,Q >=
n∑

k=0

P (k)(0).Q(k)(0)

Justifier que < , > est un produit scalaire sur Rn[X]

ALG 264
Soit (E, < , >) un e.p.r et (−→e1 , . . . ,−→en) une famille de vecteurs unitaires tels que:

∀x⃗ ∈ E,||x⃗||2 =
n∑
1

< x⃗,e⃗i >
2

1. Montrer que (−→e1 , . . . ,−→en) est une famille orthonormale.
2. On note F = vect(e⃗1, . . . ,⃗en).

Déterminer F⊥, et en déduire que (−→e1 , . . . ,−→en) est une base orthonormale de E

ALG 265
Soit (E, < , >) un espace euclidien de dimension n, et (−→e1 , . . . ,−→en) une famille de vecteurs telle

que: ∀x⃗ ∈ E,||x⃗||2 =
n∑
1

< x⃗,e⃗i >
2

1. On note F = vect(e⃗1, . . . ,⃗en) . Déterminer F⊥ et en déduire que (−→e1 , . . . ,−→en) est une base de E.

2. Démontrer que : ∀(x⃗,y⃗) ∈ E2, < x⃗,y⃗ >=
n∑

i=1

< x⃗,e⃗i > . < y⃗,⃗ei > (on pourra développer ||x⃗+ y⃗||2)

ALG 266
On considère E = R2[X] muni du produit scalaire < P,Q >= P (−1)Q(−1) + P (0)Q(0) + P (1)Q(1)

1. On note D = vect(X − 2). Déterminer D⊥

2. Soit F = {P ∈ E |P (3) = 0}.
(a) F et D sont-ils deux sev orthogonaux?
(b) Déterminer F⊥.

3

ALG 267
Soient F1 et F2 deux sev. Montrer que:

1. (F1 + F2)
⊥ = F⊥

1 ∩ F⊥
2

2. F⊥
1 + F⊥

2 ⊂ (F1 ∩ F2)
⊥

ALG 268
Soit E = C0([0,1],R) muni du produit scalaire ϕ(f,g) =

∫ 1

0
f(t)g(t)dt.

On considère F = {f ∈ E|f(0) = 0}
1. Soit f ∈ F⊥

(a) Montrer que
∫ 1

0
t.f 2(t)dt = 0

(b) En déduire que f = 0

2. Que vaut F⊥?
3. En déduire (F⊥)⊥

ALG 269
(E, < , >) est un espace préhilbertien.
Soit a⃗ ∈ E et λ ∈ R.
On souhaite résoudre l’équation < a⃗,x⃗ >= λ (C)

1. Traiter le cas où a⃗ = 0⃗

2. On considère désormais que a⃗ ̸= 0⃗

(a) Déterminer une solution particulière x⃗0.
(On pourra chercher x⃗0 sur une droite judicieuse)

(b) En déduire que x⃗ vérifie (C) ssi x⃗ est la somme de x⃗0 et d’un autre vecteur appartenant à un
espace que l’on précisera

(c) Faire un dessin dans le cas où E = R2

ALG 270 (Gram-Schmidt)
1. On se place dans E = R4 muni de son psu.

Déterminer une base orthonormée de F = {(x,y,z,t) ∈ R4 |x− y − z − t = 0}

2. On se place dans E = C0([−1,1],R) muni du ps < f,g >=

∫ +1

−1

f(t)g(t)dt.

Orthonormaliser la famille F = (t 7→ 1, t 7→ |t|, t 7→ t)

ALG 271
Soit E = C0([−1,1],R). Pour f et g dans E, on pose < f,g >=

∫ 1

−1
f(t)g(t)dt

(On admet qu’il s’agit d’un produit scalaire sur E)
On note P et I les sous-ensembles de E formés des fonctions paires et impaires.
On rappelle que P ⊕ I = E

1. Montrer que P et I sont deux sev orthogonaux.
A-t-on montré que P⊥ = I? Sinon qu’a-t-on montré?

2. Soit f ∈ P⊥.
D’après le rappel, on peut dire ∃ ! (p,i) ∈ P × I, f = p+ i

(a) Montrer que p = 0. Quelle inclusion a-t-on prouvé?
(b) Que peut-on conclure entre P⊥ et I ?
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ALG 272
N désigne un entier compris entre 1 et 4.
On considère E = R4 muni de sa base canonique (i,j,k,l).

On pose pour tout x = (x1,x2,x3,x4) ∈ E et y = (y1,y2,y3,y4) ∈ E, < x,y >=
N∑
i=1

i.xi.yi

1. < , > est-il un produit scalaire sur E lorsque N = 3?
Dans la suite on suppose que N = 4

2. Justifier que (E, < , >) est un espace euclidien
3. Montrer que le plan F = vect((1,1,0,0),(1,0,1,0)) et la droite D = vect((−6,3,2,1)) sont orthogo-

naux. A-t-on F⊥ = D ou F = D⊥?

ALG 273
On munit R[X] du produit scalaire < P,Q >=

∫ +1

−1
P (t)Q(t)dt.

On admet la propriété P suivante:
il existe une unique suite de polynômes (Pn)n⩾0 formée de polynômes orthogonaux deux à deux et tels
que :

i) Pn est un polynôme de degré n

ii) Le coefficient dominant de Pn vaut 1

1. (a) A l’aide de coefficients inconnus, déterminer P0, P1 et P2

(b) On donne P3 = X3 − 3

5
X.

Vérifier qu’il est bien orthogonal aux trois polynômes que vous avez trouvés.
2. Dans cette question on souhaite montrer que Pn est paire [impaire] lorsque n est pair[impair].

Pour cela, on pose Qn(X) = (−1)nPn(−X)

(a) Pour tout n ̸= m, calculer < Qn,Qm >

(b) Donner le degré et le coefficient dominant de Qn

(c) Conclure
3. Soit n ⩾ 1 un entier. On souhaite montrer dans cette question que Pn+1 − XPn est élément de

l’orthogonal de Rn−2[X].
(a) Pour Q ∈ Rn−2[X], justifier que < Pn+1,Q >= 0 et que < XPn,Q >=< Pn,XQ >= 0

(b) Conclure
4. Déduire des questions précédentes que pour tout n ⩾ 1 il existe λn ∈ R tel

que Pn+1 = XPn + λnPn−1.
Donner les valeurs de λ1 et λ2

ALG 274 (Matrice de Hilbert)
Soit H = (hij) ∈ Mn(R), avec hij =

1

i+ j − 1
On identifie Rn et Mn,1(R).
On pose pour (X,Y ) ∈ Rn × Rn, < X,Y >= XT .H.Y

1. Vérifier que ∀i(,j) ∈ [[1,n]]2, hij =

∫ 1

0

ti+j−2dt

2. Montrer que pour tout X =

x1
...
xn

 on a < X,X >=
n∑

i=1

n∑
j=1

xi.xj.hij =

∫ +1

0

(
n∑

i=1

xit
i−1)2dt

3. Montrer que < , > est un produit scalaire sur Rn

4. En déduire que H est une matrice inversible

5

ALG 275
Pour u = (x,y) ∈ R2 et v = (x′,y′) ∈ R2, on pose φ(u,v) = 2xx′ + 2yy′ + xy′ + x′y

1. Montrer que φ définit un produit scalaire sur R2

2. La base canonique de R2 est-elle orthogonale pour le produit scalaire φ?
3. Déterminer une base de R2 orthonormée pour ce produit scalaire

ALG 276 (dans un espace de suites)
On note l2(R) l’ensemble de suites (un) telles que

∑
u2
n converge, càd

l2(R) = {u = (un)n⩾0 ∈ RN |
∑
n⩾0

u2
n CV }

Pour u et v éléments de l2(R), on pose < u,v >=
∞∑
n=0

unvn

1. Montrer que la série
∑

un.vn est bien convergente lorsque u et v sont éléments de l2(R)
2. Montrer que (l2(R), < , >) est un espace préhilbertien

3. En déduire que pour tout (u,v) ∈ l2(R)2,
(

∞∑
n=0

un.vn

)2

⩽
∞∑
n=0

(
n∑

k=0

u2
kv

2
n−k

)
ALG 277
Soit (E, < , >) un espace euclidien de dimension 4 et B = (e1,e2,e3,e4) une bon de E
Soit u ∈ L(E) de trace nulle et A = MatB(u)

1. Montrer que
4∑

i=1

< u(ei),ei >= 0

En déduire qu’il existe (i,j) ∈ [[1,4]]2 tel que < u(ei),ei >⩾ 0 et < u(ej),ej >⩽ 0

2. En considérant le fonction f : t 7→< u(tei + (1 − t)ej,tei + (1 − t)ej >, montrer qu’il un vecteur
unitaire w tel que < u(w),w >= 0

3. En déduire l’existence d’une bon B′ telle que le coefficient de la première ligne et première colonne
de la matrice de u dans cette base soit nul.

4. Prouver qu’il existe une bon B′′ telle que les coefficients diagonaux de la matrice de u dans cette
base soient tous nuls.

ALG 278
Dans R3 muni du produit scalaire usuel, appliquer le procédé d’orthonormalisation de Schmidt à la
famille (x⃗1,x⃗2,x⃗3) = (⃗i+ k⃗,− 2⃗i+ 3k⃗,⃗i+ j⃗ + k⃗)

ALG 279
Soit A ∈ GLn(R). On note B = AT .A
Pour tout X,Y ∈ Mn,1(R) on pose φ(X,Y ) = XTBY
On identifie Rn et Mn,1(R), et on note B = (e1, . . . ,en) la base canonique de Rn

1. Montrer que φ définit un produit scalaire sur Rn

2. Montrer B′ = (A−1e1, . . . ,A
−1en) est une base de Rn orthonormée pour φ

3. Quels sont les coordonnées de X =

x1
...
xn

 dans la base B′?
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ALG 280
Soit n ⩾ 1 et E = Rn[X].
Pour tout (P,Q) ∈ E2 on pose < P,Q >=

∫∞
0

P (t)Q(t)e−tdt

1. Justifier que l’intégrale est bien toujours convergente
2. Justifier que < , > est un produit scalaire sur E

3. On note (P0,P1, . . . ,Pn) la base orthonormée de Rn[X] obtenue par le procédé de Schmidt à partir
de la famille (1,X, . . . ,Xn)

(a) Déterminer P0, P1 et P2

(b) Pour tout k ∈ [[0,n]], indiquer à quoi est égal vect(P0,P1, . . . ,Pk). En déduire deg(Pk)

(c) Justifier que < Pk,Pk
′ >= 0 pour tout k ∈ [[0,n]]

(d) En déduire que Pk(0)
2 = 1

ALG 281
Pour A et B éléments de M3(R), on pose < A,B >=

3∑
i=1

3∑
j=1

aijbij.

On note F l’ensemble des matrices antisymétriques, et M la matrice M =

0 1 0
0 0 1
0 0 0

.

1. Détermier une bon de F .
2. En déduire le projeté orthogonal de M sur F

ALG 282
On considère E = R4 muni de sa base canonique B = (i,j,k,l) et de son produit scalaire usuel.

On note F le sev de R4 définie par les équations

{
x+ y + z + t = 0

x+ 2y + 3z + 4t = 0

1. Montrer que F est un plan vectoriel, puis déterminer une bon de F

2. Déterminer F⊥. (On donnera des équations, une base et sa dimension)
3. Ecrire la matrice dans la base B de la projection orthogonale sur F

ALG 283
Soit E un espace euclidien de dimension n et p un projecteur orthogonal de E de rang r. (càd que p est
la projection orthogonale sur un sev F de dimension r)
On note B = (e1, . . . ,en) une bon de E et A = (aij)1⩽i,j,⩽n la matrice de p dans la base B

1. Montrer que ∀x ∈ E, ||p(x)||2 = (p(x),x)

2. Montrer que
n∑

i=1

||p(ei)||2 = r, et en déduire que
∑

1⩽i,j⩽n

a2ij = r

ALG 284
On considère R4 muni du psu. On note (⃗i,⃗j,⃗k,⃗l) sa base canonique.
On considère F = vect(⃗i+ j⃗ ,⃗k − l⃗) et x⃗ = (1,2,3,4) = i⃗+ 2⃗j + 3k⃗ + 4⃗l

1. Déterminer le projeté orthogonal de x⃗ sur F ainsi que son symétrique orthogonal par rapport à F

2. Déterminer une bon de F⊥

ALG 285
Pour tous (a,b,c) ∈ R3 on note f(a,b,c) =

∫
[−1,1]

(sin(t)− a− bt− ct2)2dt

1. Interpréter f(a,b,c) en terme de distance
2. Justifier que le minimum de f(a,b,c) est

∫ 1

−1
sin2(t)dt− 6(sin 1− cos 1)2.

Pour quelle(s) valeur(s) est-il obtenu?
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ALG 286
Soit E = R3 muni du produit scalaire usuel et de la base canonique (⃗i,⃗j,⃗k), et F le plan d’équation x− y + z = 0
Déterminer la matrice, dans la base canonique de E, de la projection orthogonale sur F .
(on pourra s’intéresser à la projection sur F⊥)

ALG 287
Soit E = C2([0,1],R).
On note:

• G = {g ∈ E , g′′ = g}
• H = {h ∈ E , h(0) = h(1) = 0}

• < f,g >=

∫ 1

0

f(t)g(t) + f ′(t)g′(t)dt

1. Justifier que (ch , sh) est une base de G

2. Vérifier que H est un sev de E

3. Vérifier que < , > est un produit scalaire sur E

4. Montrer que ∀f ∈ E,∀g ∈ G, < f,g >= f(1)g′(1)− f(0)g′(0)

5. Montrer que H = G⊥

6. Soit f ∈ E.
Déterminer le projeté orthogonal de f sur G

ALG 288
1. Montrer que E = {f ∈ C1([0,+∞[,R) , f(0) = 0 , f bornée} est un espace vectoriel

2. Montrer que pour tout (f,g) ∈ E2, l’intégrale
∫ ∞

0

f(t)g(t)

t2
dt existe

3. Montrer que φ : (f,g) 7→
∫ ∞

0

f(t)g(t)

t2
dt est un produit scalaire sue E

4. Montrer que ∀(f,g) ∈ E2,

∫ ∞

0

f(t)g(t)

t2
dt =

∫ ∞

0

f ′(t)g(t) + f(t)g′(t)

t
dt

5. On note G = vect(g1,g2) où gk : t 7→ 1− e−kt. On admet que
∫ ∞

0

e−at − e−bt

t
dt = ln

b

a
Déterminer la projection orthogonale de f ∈ E sur G

ALG 289
Soit a un paramètre réel. On considère le système (S) :


x+ y = 4

−x− y = a

x− z = 1

1. Montrer que le système (S) est compatible ssi

4
a
1

 ∈<

 1
−1
1

 ,

 1
−1
0

 ,

0
0
1

 >=<

 1
−1
0

 ,

0
0
1

 >

2. On suppose que a = 2, on souhaite fournir une solution approchée du système.

(a) Quel est le projeté orthogonal du vecteur

4
2
1

 sur le plan vect(

 1
−1
0

 ,

0
0
1

)?

(b) En déduire les solutions approchées du système. Combien en existe-t-il?
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ALG 290
On considère l’espace euclidien (E = Mn(R), < , >) défini par < A,B >= tr(AT .B)
On note An [resp. Sn] l’espace vectoriel des matrice antisymétriques [resp. symétriques] d’ordre n

1. Montrer que Sn et An sont orthogonaux
2. On rappelle que Mn(R) = Sn ⊕An.

Donner pour toute matrice B ∈ Mn(R) la décomposition associée.
3. Déterminer la projection orthogonale d’une matrice B ∈ E sur l’espace Sn

Application: cas où B =

(
1 2
3 4

)
4. Montrer que d(B,Sn) =

1

2
||B −BT || pour tout B ∈ E

ALG 291 (inégalité de Bessel)
Soit (E, < , >) un espace préhilbertien et (e⃗1, . . . ,⃗ep) une famille orthonormale.
On note F = vect(e⃗1, . . . ,⃗ep)

1. Montrer que pour tout x⃗ ∈ E, ||pF (x⃗)||2 ⩽ ||x⃗||2

2. En déduire que pour tout x⃗ ∈ E,
p∑

i=1

< e⃗i,x⃗ >2⩽ ||x⃗||2

ALG 292
1. Déterminer la matrice dans la base canonique de R3 de la symétrie orthogonale par rapport au

plan P1 d’équation 2x− y + z = 0.
2. Même question avec P2 d’équation y = 0

3. Etudier la composée de ces deux symétries orthogonales

ALG 293
Soit v⃗ ̸= 0⃗ et λ ̸= 0. On définit l’application f par f(x⃗) = x⃗+ λ < x⃗,v⃗ > v⃗
Déterminer une CNS sur λ pour que f ∈ O(E). Reconnaître alors l’application f .
(on pourra déterminer E1(f) et E−1(f))

ALG 294
Soit (E,(|)) un espace euclidien et f : E → E une application linéaire qui conserve l’orthogonalité.
C’est à dire que ∀(x⃗,y⃗) ∈ E2, (x⃗|y⃗) = 0 ⇒ (f(x⃗)|f(y⃗)) = 0

1. Pour u⃗ et v⃗ vecteurs unitaires, calculer (u⃗+ v⃗|u⃗− v⃗)

2. Montrer que pour u⃗ et v⃗ vecteurs unitaires, on a ||f(u⃗)|| = ||f(v⃗)||
3. En déduire qu’il existe α ∈ R+, ∀x⃗ ∈ E, ||f(x⃗)|| = α||x⃗||
4. Montrer qu’il existe g ∈ O(E) tel que f = α.g

ALG 295
Dans R3 muni du psu, on considère la réflexion échangeant u⃗ = (1,− 2,3) et v⃗ = (−2,3,1).
Indiquer le plan par rapport auquel s’effectue la réflexion.

ALG 296 (très classique)
Soit (aij) ∈ Mn(R) une matrice orthogonale.
Montrer que |

∑
1⩽i,j⩽n

aij| ⩽ n

indication: On considérera (e⃗1, . . . ,⃗en) la base canonique de Rn qui est orthonormée pour le produit scalaire
usuel, ainsi que f l’endomorphisme canoniquement associé à A. On pourra alors montrer que

∑
1⩽i,j⩽n

aij

est le produit scalaire entre e⃗1 + · · ·+ e⃗n et un autre vecteur. . . puis appliquer une fameuse inégalité!
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ALG 297
Soit E un espace euclidien, f ∈ O(E) et g = idE − f .

1. Montrer que Im g et ker g sont orthogonaux et supplémentaires dans E

2. Pour tout q ⩾ 1 on note Sq =
1
q
(idE + f + f 2 + · · ·+ f q−1)

(a) Donner une expression très simple de Sq(x⃗1) pour x⃗1 ∈ ker(g)

(b) Donner une expression très simple de Sq(x⃗2) pour x⃗2 ∈ im(g)

(c) Justifier avec soin que lim
q→+∞

Sq est une certaine projection dont on donnera les éléments

ALG 298
1. Montrer que, sur R3[X] , < P,Q >=

∫ +1

−1
P (t)Q(t)dt définit un produit scalaire.

2. En déduire min
(a,b,c)∈R3

∫ +1

−1
(t3 − at2 − bt− c)2dt (on trouvera 8/175)

ALG 299
1. Montrer que, sur R2[X] , < P,Q >=

∫ +1

−1
P (t)Q(t)dt définit un produit scalaire.

2. Déterminer le projeté orthogonal sur F = vect(1,X) de X2

3. En déduire min
(a,b)∈R2

∫ +1

−1
(t2 + at+ b)2dt

ALG 300
1. Montrer que, sur R3[X] , < P,Q >=

∫ +1

−1
P (t)Q(t)dt définit un produit scalaire.

2. Déterminer le projeté orthogonal sur F = vect(1,X,X2) de X3

ALG 301
Soit n ⩾ 2 un entier et A ∈ Mn(R) une matrice symétrique.
On identifie dans cet exercice les vecteurs de Rn avec les matrices unicolonnes Mn,1(R)
Pour tout (X,Y ) ∈ Mn,1(R)2 on pose ϕ(X,Y ) = XTAY

1. Montrer que ϕ est une forme bilinéaire symétrique

2. Dans cette question, on prend A =

(
1 2
2 λ

)
avec λ ∈ R

(a) Vérifier que
(
x
y

)T

A

(
x
y

)
= (x+ 2y)2 + (λ− 4)y2

(b) En déduire que ϕ est un produit scalaire sur R2 ssi λ > 4

3. Dans cette question, on suppose que A est diagonalisable et on écrit A = PDP−1

(a) Dans le cas particulier où P =

(
1 1
1 −1

)
et D =

(
1 0
0 0

)
, sans calculer A, donner un vecteur

non nul X tel que AX = 0 et en déduire que ϕ n’est pas un ps
(b) Dans le cas général, montrer que si A possède une valeur propre négative ou nulle alors ϕ n’est

pas un ps.

ALG 302
Soit (E, < , >) un espace euclidien et B = (e⃗1, . . . ,⃗en) une bon.
On considère un vecteur non nul a⃗ = a1e⃗1 + · · ·+ ane⃗n.
On note D la droite dirigée par a⃗ et f la projection orthogonale sur D.

1. Calculer f(e⃗j) pour tout j ∈ [[1,n]]

2. En déduire la matrice M = MatB(f).

Comment pourrait-on simplement l’écrire à l’aide de la matrice unicolonne A =


a1
a2
...
an

?
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ALG 303
Soit (E, < , >) un espace euclidien. et F un sev de E.
On note B [resp. B′] une bon de F [resp. F⊥].
Montrer que B ∪ B′ est une bon de E

ALG 304 (la seule valeur propre réelle possible d’une matrice antisymétrique est 0)
On considère Rn muni de sa structure euclidienne canonique.
On identifie Rn et Mn,1(R)
Soit A une matrice antisymétrique réelle d’ordre n.
On suppose que A possède une valeur propre réelle λ, et on note X un vecteur propre associé.
En calculant de deux manières différentes XTATAX, montrer que λ = 0

ALG 305
On considère Rn muni de sa structure euclidienne canonique.
On identifie Rn et Mn,1(R)
Soit A ∈ Mn(R). Nous allons montrer que ker(AT .A) = kerA

1. Montrer l’inclusion évidente.
2. Soit X ∈ ker(ATA). Déterminer ||AX||2 et conclure
3. En déduire que rgA = rg(ATA)

ALG 306
Soit A = (ai,j) ∈ On(R). Montrer que

n∑
i=1

n∑
j=1

a2i,j = n

ALG 307
Soit la matrice A =

1/
√
2 α −β

1/
√
2 −1/

√
3 β

0 γ 2β

.

Pour quelle(s) valeur(s) de α, β et γ cette matrice est-elle orthogonale?

ALG 308
Soit A une matrice antisymétrique d’ordre n. On pose B = (In + A)(In − A)−1.
Montrer que B est une matrice orthogonale.

ALG 309
Dans R3 muni du psu,
on considère ω⃗ un vecteur unitaire et l’application ∀x⃗ ∈ R3, f(x⃗) = ω⃗ ∧ x⃗+ < ω⃗,x⃗ > ω⃗

1. Montrer que f est un endomorphisme orthogonal
2. Ecrire la matrice de f dans une bond bien choisie, et en déduire la nature de f

ALG 310 (rotation=produit de deux réflexions)
On considère B = (e⃗1,e⃗2,e⃗3) une bond de E.
On note :

• n⃗1 = e⃗1
• n⃗2 = cosα.e⃗1 + sinα.e⃗2 où α est un réel fixé.
• P1 [resp. P2] le plan de vecteur normal n⃗1 [resp. n⃗2]
• s1 [resp. s2] la réflexion par rapport au plan P1 [resp. P2]

1. Ecrire les matrices dans la base B de s1, s2 et s2 ◦ s1
2. Reconnaitre l’isométrie vectorielle s2 ◦ s1
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ALG 311
On se place dans Rn muni du produit scalaire usuel, et on identifie. . . .
Le produit scalaire sera noté (|) et on a donc (X|Y ) = XT .Y )
Soit A une matrice inversible de Mn(R)

1. montrer que les valeurs propres de B = ATA sont positives.
2. montrer que si la famille {X1, . . . ,Xn} est une famille orthonormale de Rn, et si la famille {AX1, . . . ,AXn}

est une famille orthogonale, alors chaque Xi est un vecteur propre de B

ALG 312
On considère E = Mn((R)) muni du ps < A,B >=

n∑
i=1

n∑
j=1

aij.bij = tr(AT .B)

On note H = {M = (mij) ∈ E |
n∑

i=1

n∑
j=1

mij = 0}.

Déterminer H⊥ (on pourra considérer la matrice Attila. . . )

ALG 313
On note E = R2[X] muni du produit scalaire < P,Q >=

2∑
i=−1

P (i).Q(i)

Appliquer le procédé d’orthonormalisation de Schmidt à la famille (X2,X,1)

ALG 314
On considère R4 muni du psu. On note B = (⃗i,⃗j,⃗k,⃗l) sa base canonique.
On considère F = vect(⃗i+ j⃗ ,⃗k − l⃗) .

1. Déterminer la matrice dans la base B de la projection orthogonale sur F , puis de la symétrie
orthogonale par rapport à F

2. Déterminer une bon de F⊥

ALG 315 (endomorphismes antisymétriques)
Soit (E,.) un espace euclidien et f ∈ L(E) tel que ∀x ∈ E,f(x).x = 0
On considère B = (e1, . . . ,en) une bon de E, et A = MatBf

1. Montrer que ∀x ∈ E,∀y ∈ E,f(x).y = −x.f(y)
( on pourra considérer f(x+ y).(x+ y))

2. Montrer que A est une matrice antisymétrique
3. Montrer que Im f et ker f sont supplémentaires orthogonaux
4. Montrer que Im f est stable par f et que la restriction de f à Im f est bijective
5. Dans le cas où E = R3, on veut montrer qu’il existe ω ∈ E tel que ∀x ∈ E, f(x) = ω ∧ x.

On note B = (i,j,k) une bond de E
et on considère ω = a.i+ b.j + c.k ainsi que h : E −→ E

x 7−→ ω ∧ x
(a) Ecrire la matrice de h dans la base B
(b) Justifier qu’il existe ω ∈ E tel que ∀x ∈ E, f(x) = ω ∧ x.

ALG 316
Dans R3 muni du psu et de sa base canonique, on considère une rotation f tq

{
f(i− j + k) = i− j + k

f(i) = k

1. Déterminer l’axe de la rotation. Donner un vecteur w qui dirige l’axe de rotation
2. On note P = D⊥

(a) Déterminer le projeté orthogonal de i et celui de k sur P

(b) Déterminer une bond (u,v,w) telle que i ∈ vect(u,w)

(c) Sachant que r(u) = cos θ.u+ sin θ.v, déterminer l’angle θ de cette rotation.
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ALG 317 (endomorphismes symétriques)
Soit (E, < , >) un espace euclidien et f ∈ L(E) tel que ∀(x,y) ∈ E2, < f(x),y >=< x,f(y) >

1. Montrer que (ker f)⊥ = Im(f)

2. On suppose que E1 ⊕ E2 = E et on note p la projection sur E1 parallèlement à E2

(a) Montrer que si p est une projection orthogonale alors ∀(x,y) ∈ E2, < p(x),y >=< x,p(y) >

(b) Etudier la réciproque
3. On note A la matrice de f dans une base orthonormée B de E.

Justifier que A est une matrice symétrique
4. En déduire que f est diagonalisable et qu’il existe une base orthonormée de E formée de vecteurs

propres de f

ALG 318
Donner la matrice dans la base canonique de R3 de la rotation d’axe dirigée par i⃗− 2⃗j et d’angle

π

6

ALG 319
Soit f l’endomorphisme canoniquement associé à la matrice M =


2 0 0 3
0 2 3 0
0 3 2 0
3 0 0 2


1. Que dire de f ?
2. Montrer qu’il existe des projections orthogonales p et q, et deux réels λ et µ tels que :

f = λp+ µq p ◦ q = 0 p+ q = id

ALG 320
Soit A une matrice symétrique réelle d’ordre n.
On note λ1 ⩽ λ2 ⩽ . . . ⩽ λn ses valeurs propres comptées avec leurs multiplicités.
Avec la notations habituelles, on introduit les matrices P et D telles que A = PDP T .

Pour toute matrice unicolonne X, on pose Y = P T .X =

y1
...
yn


1. Montrer que ||Y || = ||X||

2. Montrer que XTAX =
n∑

i=1

λiy
2
i

3. En déduire que pour toute matrice unicolonne X on a λ1||X||2 ⩽ XTAX ⩽ λn||X||2

4. On suppose que λ1 < λ2 et que λn−2 < λn−1 = λn.
(a) Déterminer les X tels que λ1||X||2 = XTAX

(b) Déterminer les X tels que λn||X||2 = XTAX

ALG 321
Dans R3, on considère f la rotation d’axe D = vectu avec u unitaire et d’angle θ.
Montrer que pour tout x ∈ R3 on a

f(x) = (1− cos θ). < x,u > .u+ cos(θ).x+ sin(θ).u ∧ x

ALG 322
Soit E un espace euclidien et f ∈ O(E).
Montrer que f est diagonalisable ssi f 2 = idE
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ALG 323
Soit B une bon de E, f ∈ L(E) et A = MatBf .
Soit n⃗ ̸= 0⃗ un vecteur de E:

• on note N sa matrice unicolonne associée dans la base B
• on note D = vect n⃗ la droite dirigée par n⃗

• on note H = D⊥ (H est donc un hyperplan de vecteur normal n⃗)

Nous allons montrer que: H est stable par f ssi N est vecteur propre de AT

1. On suppose que N est vecteur propre de AT

(a) Montrer qu’il existe λ ∈ R tel que ∀X ∈ Mn,1(R), NTAX = λ.NTX

(b) Traduisez en terme de vecteurs et endomorphismes la propriété ci-dessus
(c) En déduire l’implication (x⃗ ∈ H =⇒ f(x⃗) ∈ H)

2. On suppose que H est stable par f .
(a) Expliquer pourquoi il existe λ ∈ R et Z ∈ Mn,1(R) tels que ATN = λN + Z et NTZ = 0

(b) Calculer de deux manières différentes ZTATN , et en déduire que Z = 0

(c) Conclure

3. Application: déterminer tous les sev stables par la matrice A =

 1 1 1
1 1 1
−1 1 1


ALG 324
Les espaces Rn et Rp sont munis de leurs structures euclidiennes usuelles.
Soit f ∈ L(Rn,Rp) et b ∈ Rp

On note respectivement A et B leurs matrices dans les bases canoniques adéquates.
On suppose que b ̸∈ Im(f).
On souhaite déterminer les x ∈ Rn tels que ||f(x)− b|| soit minimale.

1. Montrer que ce problème de minimisation possède au moins une solution x0 qui est caractérisé par
f(x0)− b ∈ (Im(f))⊥

2. Montrer que la condition ci-dessus équivaut à la condition ATAX0 = ATB

3. Dans le cas où ATA est inversible, donner une expression simple de X0

ALG 325
On considère la matrice G =

1

15

 5 0 −10
−8 5 6
6 −10 8

.

On note g l’endomorphisme de R3 canoniquement associé.
1. La matrice G est-elle orthogonale?

2. On note u⃗1 =

√
2

2
(1,− 1,0,) u⃗2 =

√
2

6
(1,1,− 4) et u⃗3 =

1

3
(2,2,1)

Vérifier que B = (u⃗1,u⃗2,u⃗3) est une base orthonormée directe de R3 telle que u⃗3 ∈ ker g et que dans

cette base MatB(g) =

 3/5 4/5 0
−4/5 3/5 0
0 0 0

 = G′

3. Montrer que g est la composée d’une projection orthogonale et d’une rotation.
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ALG 326
Après avoir vérifié que les matrices sont orthogonales, déterminer la nature et les éléments géométriques
des endomorphismes de R3 canoniquement associés aux matrices suivantes:

A =

0 0 1
1 0 0
0 1 0

 B =

 0 0 1
−1 0 0
0 −1 0

 C =

 cosα 0 sinα
0 −1 0

− sinα 0 cosα

 D =
1

3

 2 2 1
−2 1 2
1 −2 2



E =
1

9

 8 1 −4
−4 4 −7
1 8 4

 F =
1

3

−2 2 −1
2 1 −2
−1 −2 −2

 G =
1

4

−1 3 −
√
6

3 −1 −
√
6√

6
√
6 2


H =

1

3

 2 2 −1
−1 2 2
2 −1 2

 I =
1

3

−1 2 2
2 2 −1
2 −1 2

 J =

 cosα 0 sinα
0 1 0

− sinα 0 cosα


ALG 327
Soit (E, < , >) un espace euclidien.
On considère s, la symétrie orthogonale par rapport à l’hyperplan (vect n⃗)⊥ où n⃗ est un vecteur unitaire
donné. Une base orthonormale B étant fixée, on note N la matrice unicolonne des coordonnées de n⃗ dans
la base B.

1. Montrer que la matrice de s dans la base B est I − 2NNT

2. application: On suppose que dimE = 3 et on note (⃗i,⃗j,⃗k) une bon de E.
On considère le plan d’équation x+ y − 2z = 0.
Ecrire la matrice dans la base (⃗i,⃗j,⃗k) de la réflexion par rapport au plan P

ALG 328
Justifier que la matrice

3 + i 5 4
5 1 + i −1
4 −1 −2 + i

 est inversible.

ALG 329
1. Résoudre dans R l’équation xn = 1 avec n ∈ N∗

2. Résoudre dans C l’équation zn = 1 avec n ∈ N∗

3. Soit M une matrice symétrique réelle telle que M2024 = In. Que dire de M2?
4. Soit M une matrice symétrique réelle telle que M2025 = In. Que dire de M ?

ALG 330
Soit A =

1

9

23 2 −4
2 26 2
−4 2 23

. (On trouve χA(X) = X3 − 8X2 + 21X − 18 = (X − 2)(X − 3)2.)

Diagonaliser A en utilisant une matrice orthogonale de déterminant positif.
(Sera-ce plus simple de déterminer déjà E3 ou E2?)
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ALG 331 (méthode des moindres carrés)
On considère n points du plan Ai(xi,yi). On souhaite déterminer la droite D d’équation y = ax + b qui
minimise la somme des carrés des distances verticales entre un point et la droite,
c’est à dire on souhaite déterminer

inf
(a,b)∈R2

n∑
i=1

(yi − axi − b)2

On se place dans E = Rn muni du psu.

On note Y =

y1
...
yn

 ainsi que X =

x1
...
xn

 et U =

1
...
1


On note F = vect(X,U) On suppose que les xi ne sont pas tous égaux (hypothèse (H))

1. Interpréter géométriquement l’hypothèse (H). Que vaut dimF ?
2. On note a0X + b0U le projeté orthogonal de Y sur F .

(a) Montrer que < Y − a0X − b0U,X >=< Y − a0X − b0U,U >= 0 (∗)

(b) Montrer que matriciellement (∗) s’écrit
(

||X||2 < U,X >
< U,X > ||U ||2

)
︸ ︷︷ ︸

=M

.

(
a0
b0

)
=

(
< Y,X >
< Y,U >

)

(c) Calculer det(M) et justifier que, grâce à l’hypothèse (H), on peut affirmer que det(M) ̸= 0

(d) En déduire que (a0,b0) vérifie le système


a0.

n∑
i=1

x2
i + b0.

n∑
i=1

xi =
n∑

i=1

xiyi

a0..
n∑

i=1

xi + n.b0 =
n∑

i=1

yi

(e) Il est d’usage de noter en Statistique

µx =
1

n

n∑
i=1

xi µy =
1

n

n∑
i=1

yi µx2 =
1

n

n∑
i=1

x2
i et µxy =

1

n

n∑
i=1

xiyi

Montrer que a0 =
µxy − µx.µy

µx2 − µ2
x

et b0 = µy − a0.µx

FIN des exercices ALG !
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Quelques corrigés

254 Nous allons utiliser dans cet exercice le théorème suivant d’intégration:
Soit f une fonction continue et de signe constant le segment [a,b]. Alors:

i) si f est positive alors
∫ b

a
f ⩾ 0

ii) si f est négative alors
∫ b

a
f ⩽ 0

iii)
∫ b

a
f = 0 ssi f est (identiquement) nulle sur [a,b]

• On note E = C1([0,1],R) et on pose pour tout f et g de E : < f,g >= f(0)g(0) +
∫ 1

0
f ′g′

• Le crochet est linéaire à droite.
En effet, soient (f,g1,g2) ∈ R3 et λ ∈ R on a

< f,λg1+g2 >= f(0).(λg1(0)+g2(0))+

∫ 1

0

f ′(λg1+g2)
′ = λf(0)g1(0)+f(0)g2(0)+

∫ 1

0

λf ′g′1+f ′g′2

Or par linéarité de l’intégrale on peut écrire∫ 1

0

λf ′g′1 + f ′g′2 = λ

∫ 1

0

f ′g′1 +

∫ 1

0

f ′g′2

On obtient donc

< f,λg1+g2 >= λf(0)g1(0)+f(0)g2(0)+λ

∫ 1

0

f ′g′1+

∫ 1

0

f ′g′2 = λ(f(0)g1(0)+

∫ 1

0

f ′g′1)+f(0)g2(0)+

∫ 1

0

f ′g′2

Au final on a donc établi que

< f,λg1 + g2 >= λ < f,g1 > + < f,g2 >

• Le crochet est symétrique.
En effet, soit (f,g) ∈ E2. Comme la multiplication interne dans R est commutative on a

< g,f >= g(0)f(0) +

∫ 1

0

g′f ′ = f(0)g(0) +

∫ 1

0

f ′g′ =< f,g >

On a prouvé que le crochet est symétrique et linéaire à droite, il est donc aussi linéaire à gauche.
• Le crochet est positif

En effet, soit f ∈ E.
Comme f est une fonction à valeurs réelles, on a f(0)2 ⩾ 0

Comme f ′ est une fonction continue sur [0,1], et à valeurs réelles, on peut dire que (f ′)2 est
une fonction continue sur [0,1] à valeurs positives. Or l’intégrale d’une fonction positive est posi-
tive(cf.théorème ci-dessus) donc

∫ 1

0
(f ′)2 ⩾ 0

On a prouvé que < f,f > était la somme de deux termes positifs, donc < f,f >⩾ 0

• Le crochet est défini.
Soit f ∈ E tel que < f,f >= 0.
On a donc

f(0)2 +

∫ 1

0

(f ′)2 = 0

Une somme de termes positifs est nulle ssi chaque terme est nul, on a donc

f(0) = 0 et
∫ 1

0
(f ′)2 = 0

17

La fonction (f ′)2 est continue et positive sur [0,1], et
∫ 1

0
(f ′(t))2 = 0 donc d’après le théorème de

l’intégrale nulle, on peut affirmer que (f ′)2 est nulle sur [0,1], c’est à dire que f ′ est la fonction
nulle sur le segment [0,1].
Ainsi f est une fonction constante sur [0,1], et comme f(0) = 0, on a bien montré que f était la
fonction constante nulle sur [0,1], c’est à dire f = 0. cqfd

261 • Il s’agissait de penser à la quatrième question de l’exemple 9 corrigé en classe.

• On considère l’espace préhilbertien réel (E, < , >) avec E = C0([a,b],R) et

< , >: E2 −→ R
(g,h) 7−→ < g,h >=

∫
[a,b]

gh

• Soit f une fonction continue et strictement positive sur [a,b]

On considère les fonctions g =
√
f et h =

1√
f

.

Ces fonctions sont bien définies sur [a,b] et elles y sont continues, ce sont donc deux éléments de E.
En appliquant l’inégalité de Cauchy-Schwartz aux fonctions g et h cela donne

||g||.||h|| ⩾ | < g,h > |

Comme les deux membres de cette inégalité sont positifs, elle équivaut à

||g||2.||f ||2 ⩾ | < g,h > |2 =< g,h >2

• Or ||g||2 =< g,g >=
∫ b

a
g2 =

∫ b

a
f et ||h||2 =< h,h >=

∫ b

a
h2 =

∫ b

a

1

f

et < g,h >=
∫ b

a
gh =

∫ b

a
1.dt = b− a

• On trouve ainsi que
(∫ b

a
f
)(∫ b

a

1

f

)
⩾ (b− a)2

• Le cas d’égalité correspond aux fonctions g et h liées.
Comme la fonction h ̸= 0 ceci équivaut à dire qu’il existe un scalaire λ tel que g = λ.h,
soit encore qu’il existe un scalaire λ tel que

g

h
= λ, c’est à dire f = λ.

Conclusion: il y a égalité ssi f est une fonction constante

262 Soient x⃗ et y⃗ deux vecteurs d’un espace préhilbertien.
Commençons par remarquer que si y⃗ = 0⃗ l’équivalence est trivialement vérifiée.
On supposera donc dans la suite que y⃗ ̸= 0⃗

1. On suppose que x⃗ et y⃗ sont orthogonaux.
Pour tout λ ∈ R, on a les vecteurs x⃗ et λy⃗ qui sont orthogonaux, et d’après le théorème de Pytha-
gore on peut affirmer que ||x⃗+ λy⃗||2 = ||x⃗||2 + ||λy⃗||2 ⩾ ||x⃗||2.
Et donc on obtient bien que ∀λ ∈ R, ||x⃗+ λy⃗|| ⩾ ||x⃗||

2. On suppose que ∀λ ∈ R, ||x⃗+ λy⃗|| ⩾ ||x⃗||.
Ce qui équivaut à dire, les deux membre étant positifs, que ||x⃗+ λy⃗||2 ⩾ ||x⃗||2.
on sait que

||x⃗+ λy⃗||2 =< x⃗+ λy⃗,x⃗+ λy⃗ >=< x⃗,x⃗ > +2λ < x⃗,y⃗ > +λ2 < y⃗,y⃗ >
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La condition équivaut donc à

∀λ ∈ R, λ2 < y⃗,y⃗ > +2λ < x⃗,y⃗ >⩾ 0

Comme y⃗ ̸= 0⃗ on a < y⃗,y⃗ ≯= 0, et ainsi l’application λ 7→ λ2 < y⃗,y⃗ > +2λ < x⃗,y⃗ > est un
polynôme du second degré qui est toujours positif, il s’agit donc d’un polynôme du
second degré qui ne change pas de signe sur R: son discriminant est forcément inférieur
ou égal à zéro. Or ∆ = 4 < x⃗,y⃗ >2⩾ 0. On a donc forcément < x⃗,y⃗ >= 0 : les vecteurs x⃗ et y⃗
sont forcément orthogonaux!

265 1. • Soit x⃗ ∈ F⊥.
Comme chaque e⃗i est un élément de F , on a < x⃗,e⃗i >= 0.

Ainsi, on trouve que ||x⃗||2 =
n∑

i=1

< x⃗,e⃗i >
2= 0. Et donc x⃗ = 0⃗

On a donc prouvé que F⊥ ⊂ {⃗0}

• l’inclusion réciproque est immédiate car on sait que F⊥ est un sev.
Conclusion: F⊥ = {⃗0}

• Comme E est un espace euclidien et que F est un sev de E on sait par théorème que
F ⊕ F⊥ = E. Comme F⊥ = {⃗0}, on peut en déduire que F = E.

• On a donc E = vect(e⃗1, . . . ,⃗en).
La famille F = (e⃗1, . . . ,⃗en) est ainsi une famille génératrice de E avec card(F) = n = dimE,
on peut affirmer que cette famille est une base de E.
Conclusion: (e⃗1, . . . ,⃗en) est une base de E

2. On va suivre l’indication donnée.
Soient x⃗ et y⃗ deux vecteurs de E quelconque.

• On sait d’une part que

||x⃗+ y⃗||2 = ||x⃗||2 + ||y⃗||2 + 2 < x⃗,y⃗ > (1)

• D’autre part, dans cet exercice, on a

||x⃗+ y⃗||2 =
n∑

i=1

< x⃗+ y⃗,e⃗i >
2

• Or

< x⃗+ y⃗,e⃗i >
2= (< x⃗,e⃗i > + < y⃗,e⃗i >)2 =< x⃗,e⃗i >

2 + < y⃗,e⃗i >
2 +2 < x⃗,e⃗i >< y⃗,e⃗i >

Ainsi
n∑

i=1

< x⃗+ y⃗,e⃗i >
2=

n∑
i=1

< x⃗,e⃗i >
2 +

n∑
i=1

< y⃗,e⃗i >
2 +2

n∑
i=1

< x⃗,e⃗i >< y⃗,e⃗i >

d’où

||x⃗+ y⃗||2 = ||x⃗||2 + ||y⃗||2 + 2
n∑

i=1

< x⃗,e⃗i >< y⃗,e⃗i > (2)

• En faisant (1) -(2), on trouve que < x⃗,y⃗ >=
n∑

i=1

< x⃗,e⃗i >< y⃗,e⃗i >
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269 On va faire une discussion suivant (⃗a,λ) ∈ E × R
• si (⃗a,λ) = (⃗0,0), tout vecteur x⃗ de E est solution!
• si a⃗ = 0 et λ ̸= 0, aucun vecteur x⃗ de E n’est solution!
• si a⃗ ̸= 0⃗.

– On commence par déterminer un x⃗ qui marche. Il est clair que x⃗0 =
λ

||⃗a||2
a⃗ est solution.

– On a les équivalences:

(⃗a,x⃗) = λ ⇔ (⃗a,x⃗) = (⃗a,x⃗0) ⇔ (⃗a,x⃗− x⃗0) = 0 ⇔ x⃗− x⃗0 ∈ a⃗⊥

– On a donc l’ensemble des solutions cherché qui est {x⃗0 + y⃗|y⃗ ∈ a⃗⊥}
– on reconnait un espace affine de direction a⃗⊥ = (vect a⃗)⊥

– a⃗⊥ = (vect a⃗)⊥ est un hyperplan de E,

271 1. Vérification classique faite en classe
2. • Montrons que P et I sont orthogonaux.

Soit f ∈ P et g ∈ I. On a, en effectuant le changement de variable θ = −t dans l’intégrale:

< f,g >=

∫ 1

−1

f(t)g(t) =

∫ −1

1

−f(−θ)g(−θ)dθ =

∫ 1

−1

f(−θ)g(−θ)dθ

Comme f est paire et une fonction impaire cela donne

< f,g >=

∫ 1

−1

−f(θ)g(θ)dθ = −
∫ 1

−1

f(θ)g(θ)dθ = − < f,g >

Ce qui prouve que < f,g >= 0 !
remarque importante:
on sait que par définition P⊥ est l’ensemble de tous les vecteurs qui sont orthogonaux à tout
vecteur de P . Le calcul précédent montre que les vecteurs de I sont des vecteurs de P⊥, mais
il ne prouve pas que ce sont les seuls vecteurs à avoir cette propriété.
A ce niveau de la démonstration on sait seulement que I ⊂ P⊥

• Montrons maintenant que P et I sont supplémentaires dan E

i) Comme P et I sont orthogonaux on peut affirmer qu’ils sont en somme directe.
ii) Montrons que E = P + I

(c’est à dire, montrons que tout élément f ∈ E s’écrit g + h avec g ∈ P et h ∈ I)
Pour cela on raisonne par analyse-synthèse.
Soit f une fonction de E:

– Analyse: on suppose que f = g + h avec g ∈ P et h ∈ I
On a alors pour tout t ∈ [−1,+ 1],
f(t) = g(t) + h(t) et f(−t) = g(−t) + h(−t) = g(t)− h(t)
En faisant la demie-somme et la demie-différence cela donne

∀t ∈ [−1,+ 1],


g(t) =

f(t) + f(−t)

2

h(t) =
f(t)− f(−t)

2

– Synthèse: on considère les fonctions g et h définies ci-dessus.

– g ∈ P car ∀t ∈ [−1,+ 1], g(−t) =
f(−t) + f(−(−t))

2
=

f(−t) + f(t)

2
= g(t)
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– h ∈ I car ∀t ∈ [−1,+ 1], h(−t) =
f(−t)− f(−(−t))

2
=

f(−t)− f(t)

2
= −h(t)

– f = g + h car ∀t ∈ [−1,+ 1], g(t) + h(t) =
f(t) + f(−t)

2
+

f(t)− f(−t)

2
= f(t)

On a bien justifié qu’il existe (g,h) ∈ P × I, f = g + h

• Montrons l’inclusion P⊥ ⊂ I
Soit f ∈ P⊥

Comme P⊥ ⊂ E et que E = P + I, on sait qu’il existe g ∈ P et h ∈ I telles que f = g + h.
Considérons alors le produit scalaire < f,g > !
On a < f,g >=< g + h,g >=< g,g > + < h,g >. Or < f,g >= 0 car g ∈ P et f ∈ P⊥, et
< g,h >= 0 car g ∈ P et h ∈ I. Il nous reste donc < g,g >= 0, ce qui équivaut à dire que
g = 0, et ainsi que f = h!. Ceci prouve que f ∈ I

3. pour éviter des confusions, nous allons noter s (plutôt que g) l’application s : f 7→ f̂

(a) première idée:
on va montrer que s ◦ s = id puis utiliser ce que l’on sait sur les endomorphismes involutifs!
• On a s ◦ s = id.

En effet pour toute fonction f de E et tout x ∈ [−1,+ 1] cela donne

(s ◦ s)(f)(x) = s(s(f))(x) = f(−(−x)) = f(x)

De plus la linéarité de s ne faisant aucun doute, on a bien justifié que s est un endomor-
phisme involutif.

• On sait alors par théorème que s est la symétrie vectorielle par rapport à ker(s − id)
parallèlement à ker(s+ id)
ker(s− id) est le sous-espace vectoriel des vecteurs invariants, c’est à dire les fonctions f
de E telles ∀x ∈ [−1,+ 1], s(f)(x) = f(−x) = f(x). On reconnait l’ensemble P
De même, on justifie que ker(s+ id) = I

• On vient de prouver que s était la symétrie vectorielle par rapport à P parallèlement à
I. Comme I = P⊥, on peut affirmer que s est la symétrie orthogonale par rapport à P

(b) seconde idée: on utilise la décomposition trouvée à la question 2
Avec la décomposition de la question 2, en écrivant f = g + h,
cela donne ∀x ∈ [−1,1], f̂(x) = f(−x) = g(−x) + h(−x) = g(x)− h(x) = (g − h)(x)

Et ceci prouve que f̂ = g − h

Ainsi on a s : E = P ⊕ P⊥ −→ E
f = g + h 7−→ g − h

On reconnait bien la symétrie orthogonale par rapport à P

292 Nous allons utiliser la formule de la réflexion de la méthode 1 du polycopié.
Si n⃗ est un vecteur unitaire orthogonal à l’hyperplan H, on a pour tout

x⃗ ∈ E, SH(x⃗) = x⃗− 2 < x⃗,n⃗ > n⃗

. En appliquant cette formule on trouve respectivement

1. n⃗ =
2⃗i− j⃗ + k⃗√

6
et A1 =

1

3

−1 2 −2
2 2 1
−2 1 2


2. n⃗ = j⃗ et A2 =

1 0 0
0 −1 0
0 0 1


21

3. Notons s1 [s2] la première [seconde] réflexion
Notons r = s2 ◦ s1

• Déjà on sait que r est une rotation car c’est la composée de deux isométries vectorielles et que
det(r) = det(s2). det(s1) = (−1)2 = 1

• La matrice de r dans la base (⃗i,⃗j,⃗k) est A2A1 =
1

3

−1 2 −2
−2 −2 −1
−2 1 2


On déroule alors la méthode standard et on trouve que r = s2 ◦ s1 est la rotation d’axe i⃗− 2k⃗

et d’angle θ tel que


cos θ =

−2

3

sin θ =

√
5

3
Il s’agit d’un angle qui est dans l’intervalle ]π/2,π[, il s’agit donc de θ = arccos(−2/3)

(mais ce n’est pas égal à arcsin(
√
5/3) ni arctan(−

√
5/2) !)

4. remarque: si on s’intéresse à t = s1 ◦ s2 on peut bien sûr suivre le même procédé.
Cependant il est intéressant de remarquer que t = r−1

En effet, comme si est une réflexion on a si ◦ si = id c’est à dire s−1
i = si pour i = 1 ou 2

On a donc t = s1 ◦ s2 = s−1
1 ◦ s−1

2 = (s2 ◦ s1)−1 = r−1

Ainsi t = s1 ◦ s2 est la rotation d’axe vect(⃗i− 2k⃗) et d’angle − arccos(−2/3)

294 1. Soient u⃗ et v⃗ deux vecteurs unitaires.
En développant par bilinéarité, on a (u⃗+ v⃗|u⃗− v⃗) = (u⃗|u⃗)− (v⃗|v⃗) = 1− 1 = 0

2. Soient u⃗ et v⃗ deux vecteurs unitaires.
Comme les vecteurs u⃗+ v⃗ et u⃗− v⃗ sont orthogonaux, et que f conserve le produit scalaire, on peut
affirmer que (f(u⃗+v⃗)|f(u⃗−v⃗) = 0. Or f est une application linéaire, donc (f(u⃗)+f(v⃗)|f(u⃗)−(v⃗) = 0.
Par bilinéarité du produit scalaire, en développant, on trouve (f(u⃗)|f(u⃗)) = (f(v⃗)|f(v⃗)), et donc
en prenant la racine carrée: ||fu⃗)|| = ||f(v⃗)|| !

3. • Nous avons montré à la question précédente que "les images des vecteurs unitaires avaient
tous la même norme". Notons α ⩾ 0, la norme commune à toutes les images des vecteurs
unitaires.

• Comme f est une application linéaire on a f (⃗0) = 0⃗, et donc l’égalité ||f(x⃗)|| = α||x⃗|| est bien
vérifiée dans le cas où x⃗ = 0⃗

• Soit x⃗ un vecteur non nul.
Posons y⃗ =

x⃗

||x⃗||
. Comme y⃗ est un vecteur unitaire, on a ||f(y⃗)|| = α, c’est à dire que

||f( x⃗
||x⃗|| || = α. Par linéarité de f , le scalaire x⃗

||x⃗|| sort de f , et il sort ensuite de la norme en
valeur absolue...mais comme une norme est toujours positive, on aboutit à 1

||x⃗|| ||f(x⃗)|| = α.
Ce qui donne bien ||f(x⃗)|| = α||x⃗||

4. • si α = 0, on a pour tout vecteur x⃗ de E, ||f(x⃗)|| = 0 et donc f(x⃗) = 0⃗! f est donc l’endo-
morphisme nul: il peut donc s’écrire 0.g où g est un endomorphisme orthogonal quelconque
de E

• si α ̸= 0. Considérons l’endomorphisme g défini par g = 1
α
.f .

En reportant dans 3, et en simplifiant par α ̸= 0, on arrive à ||g(x⃗)|| = ||x⃗|| pour tout vecteur
x⃗ de E. Ceci prouve que g est un endomorphisme orthogonal!
On a bien prouvé que f = α.g avec g ∈ O(E): g est donc la composée d’une homothétie et
d’une isométrie vectorielle! (c’est une similitude)

298 1. fait en classe
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2. • On remarque que < 1,X >=

∫ 1

−1

t.dt = 0.

La famille (1,X) est donc une base orthogonale de F = vect(1,X)

•
||1||2 =

∫
−1

+11.dt = 2

||X||2 =
∫ 1

−1

t2dt =
2

3

< 1,X2 >=

∫ 1

−1

t2dt =
2

3

< X,X2 >=

∫ 1

−1

t3dt = 0

• La formule du projeté orthogonal donne

pF (X
2) =

< 1,X2 >

||1||2
.1 +

< X,X2 >

||X||2
X =

3

2

3. • On sait que l’on va utiliser le théorème de distance à un sev de dimension finie.
(et vue la question précédente, on se doute que ce sera d(X2,F ) avec F = vect(1,X))

• On commence par remarquer que

m = min
(a,b)∈R2

∫ 1

−1

(t2 + at+ b)2dt = min
(c,d)∈R2

∫ 1

−1

(t2 − ct− d)2dt

On a écrit ensuite la chose habituelle

m = min
(c,d)∈R2

∫ 1

−1

(t2 − ct− d)2dt

= min
(c,d)∈R2

||X2 − cX − d||2

= min
(c,d)∈R2

||X2 − (cX + d.1)||2

= min
P∈vect(1,X)

||X2 − P ||2

= min
P∈F

||X2 − P ||2

= (d(X2,F ))2

On sait par théorème que d(X2,F ) est atteinte pour un seul vecteur P0 ∈ F et P0 est le projeté

orthogonal de X2 sur F ., càd P0 = pF (X) =
3

2
.

Ainsi
m = (d(X2,F ))2 = (d(X2,P0))

2 = ||X2 − P0||2 = ||X2 − 3

2
||2

avec

||X2 − 3

2
|| =

∫ 1

−1

(t2 − 3

2
)2dt =

∫ 1

−1

t4 − 3t2 +
9

4
dt =

[
t5

5
− t3 +

9

4
t

]1
−1

= · · · = 2.9

315 1. Soit x⃗ et y⃗ deux éléments quelconques de E
On a par hypothèse f(x⃗+ y⃗).(x⃗+ y⃗) = 0
En utilisant la linéarité de f , puis la bilinéarité du ps, on arrive à f(x⃗).x⃗+f(y⃗).x⃗+f(x⃗).y⃗+f(y⃗).y⃗ = 0
Comme f(x⃗).x⃗ = f(y⃗).y⃗) = 0, on peut bien affirmer que f(x⃗).y⃗ = −x.f(y⃗)

23

2. Pour tout x⃗ et y⃗ dans E, on note X et Y les matrices unicolonnes associées dans la bon B.
Comme B est une bon, on sait que la matrice du produit scalaire est In.
On a donc f(x⃗).y⃗ = t(AX)InY = tX tAY et x⃗.f(y⃗) = tXIn(AY ) = tXAY (et donc −x⃗.f(y⃗) =
−tXAY = tX(−A)Y )
On peut donc affirmer que pour toutes matrices unicolonnes X et Y on a tX tAY = tX(−A)Y .
D’après le lemme 1 du poly de cours sur les espaces euclidiens, on peut alors affirmer que tA = −A.
On a bien prouvé que A était une matrice antisymétrique.

3. Soit x⃗ ∈ ker f et y⃗ ∈ Im f .
Comme y⃗ ∈ Im f , il existe t⃗ ∈ E, f (⃗t) = y⃗.
On a donc y⃗.x⃗ = f (⃗t).x⃗ = −t⃗.f(x⃗) = −t⃗.⃗0 = 0

4. • montrons que Im f est stable par f .
Soit x⃗ ∈ Im f ⊂ E
On a f(x⃗) ∈ Im f de manière évidente! cqfd! (rappel: on a toujours Im f 2 ⊂ Im f)

• Considérons la restriction de f à Im f , c’est à dire g : Im f −→ E
x⃗ 7−→ f(x⃗)

.

• Comme g est la restriction d’une application linéaire à un sev, g est une application linéaire.
• Comme de plus Im f est stable par f , on a donc g qui est un endomorphisme de Im f . On

peut écrire g : Im f −→ Im f
x⃗ 7−→ f(x⃗)

.

• Il est évident que ker g = ker f ∩ Im f . Or ces deux espaces sont en somme directe! On a donc
ker g = {⃗0}

• g est un endomorphisme d’un sev de dimension finie,
on sait alors que g bijective ssi ker g = {⃗0} !

• On a bien montré que g était bijective!
5. On suppose dimE = 3. On note B = (⃗i,⃗j,⃗k) un bon de E.

• Soit ω⃗ ∈ E fixé.
Nous allons écrire la matrice de l’endomorphisme h : x⃗ 7→ ω⃗ ∧ x⃗ dans la base B.
Notons (a,b,c) les coordonnées de ω⃗ dans la base B.
On a ω = a⃗i+ b⃗j + ck⃗. Et un calcul simple donne:

– h(⃗i) = c⃗j − bk⃗

– h(⃗j) = −c⃗i+ ak⃗

– h(k⃗) = b⃗i− a⃗j

Ainsi la matrice de h dans la base B est

 0 −c b
c 0 −a
−b a 0


• Notons M la matrice de f dans la base B. D’après la question 2, on sait que c’est une matrice

antisymétrique. M est donc de la forme

 0 p q
−p 0 r
−q −r 0

 avec (p,q,r) ∈ R3

Considérons le vecteur ω = −r⃗i+ qj⃗ − pk⃗, et l’application h qui lui est associé.
Par ce choix judicieux, on a MatBh = MatBf . On peut donc en déduire que f = h !

1. u(x+ y).(x+ y) = 0 = u(x).x+ u(x).y + u(y).x+ u(y).y = u(x).y + u(y).x

2. ∀x⃗ ∈ keru,∀y⃗ ∈ E,u(y⃗).x⃗ = −y⃗.u(x⃗) = −y⃗.⃗0 = 0

3. Imu2 ⊂ Imu comme toujours ! Imu et keru sont orthogonaux, donc ils sont en somme directe, et
donc keru| Imu = keru ∩ Imu = {⃗0}
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