définition 3: point régulier

Soit (I,f) une courbe paramétrée et $t_0 \in I$.

On dit que le point M_{t_0} est un point régulier lorsque

$$f'(t_0) = (x'(t_0), y'(t_0) \neq \vec{0}$$

définition 6: point birégulier

Soit (I,f) une courbe paramétrée et $t_0 \in I$.

On dit que le point M_{t_0} est un point birégulier lorsque

 $(f'(t_0), f''(t_0))$ est une famille libre

théo 1: droite tangente pour une courbe donnée par son éq.cart.

Soit U un ouvert de \mathbb{R}^2 , et $F:U\to\mathbb{R}$ de classe C^1 .

On considére la courbe Γ d'équation cartésienne F(x,y)=0.

1. Un point $M_0 = (x_0, y_0)$ de Γ est dit régulier lorsque

$$\overrightarrow{\nabla_{M_0}} F \neq \vec{0}$$

2. L'équation cartésienne de la tangente en M_0 est alors donnée par la formule

$$\overrightarrow{\nabla_{M_0}} F. \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix} = 0$$

$$(x - x_0)\frac{\partial F}{\partial x}(M_0) + (y - y_0)\frac{\partial F}{\partial y}(M_0) = 0$$

exemples de référence

• Equation cartésienne du cercle de centre $A(x_A, y_A)$ et de rayon R

$$(x - x_A)^2 + (y - y_A)^2 = R^2$$

• Equation paramétrique du cercle de centre $A(x_A, y_A)$ et de rayon R

$$\begin{cases} x = x_A + R \cdot \cos t \\ y = y_A + R \cdot \sin t \end{cases}, t \in [0, 2\pi]$$

Pour les questions qui suivent on considère les points A(1,2), B(3,0) et le vecteur $\vec{u} = (1,4)$

• équation cartésienne de la droite
$$(AB)$$

le vecteur directeur est $\overrightarrow{AB} = \begin{pmatrix} 3-1 \\ 0-2 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
$$\begin{vmatrix} x-1 & 1 \\ y-2 & -1 \end{vmatrix} = 0 \qquad -x-y+3=0$$

équation paramétrique de la droite passant par
$$A$$
 et de vecteur directeur \vec{u}

$$\begin{cases} x = 1 + 1.t \\ y = 2 + 4.t \end{cases} t \in \mathbb{R}$$

 \bullet équation cartésienne de la droite passant par A et de vecteur normal \vec{u}

$$\begin{pmatrix} x-1 \\ y-2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix} = 0 \qquad x+4y-9=0$$

6. Déterminer le réel k pour que les droites $D_1: 2x + k.y + 3 = 0$ et $D_2: \begin{cases} x = 1 + t \\ y = 3 + 2t \end{cases}$, $t \in \mathbb{R}$ (a) ... soient perpendiculaires (b)... soient parallèles

$$\vec{d_1} = \begin{pmatrix} -k \\ 2 \end{pmatrix}$$
 vecteur directeur de D_1 $\vec{d_2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ vecteur directeur de D_2

$$D_1 \parallel D_2 \Longleftrightarrow \det(\vec{d}_1, \vec{d}_2) = 0 \Longleftrightarrow \begin{vmatrix} -k & 1 \\ 2 & 2 \end{vmatrix} = 0 \Longleftrightarrow k = -1$$

$$D_1 \perp D_2 \Longleftrightarrow \vec{d}_1 \cdot \vec{d}_2 = 0 \Longleftrightarrow \begin{pmatrix} -k \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 0 \Longleftrightarrow k = 4$$