Projecteurs & Symétries vectorielles

Table des matières

1	Homothéties	1
2	Projections associées à une somme directe de 2 sev	2
3	Symétries vectorielles	5

définition 1: vecteurs invariants/anti-invariants

Soit E un espace vectoriel et f un endomorphisme de E.

- i) On dit le vecteur \vec{x} est un VECTEUR INVARIANT de f lorsque $f(\vec{x}) = \vec{x}$
- ii) On dit le vecteur \vec{x} est un VECTEUR ANTI-INVARIANT de f lorsque $f(\vec{x}) = -\vec{x}$
 - L'ensemble des vecteurs invariants par f est $\{\vec{x} \in E \mid f(\vec{x}) \vec{x} = \vec{0}\} = \ker(f id_E)$
 - L'ensemble des vecteurs anti-invariants par f est $\{\vec{x} \in E \mid f(\vec{x}) + \vec{x} = \vec{0}\} = \ker(f + id_E)$

En effet, on a les équivalences

$$\vec{x}$$
 vecteur invariant $\iff f(\vec{x}) = \vec{x} \iff f(\vec{x}) - \vec{x} = \vec{0}_E \iff (f_i d_E)(\vec{x}) = \vec{0}_E \iff \vec{x} \in \ker(f - id_E)$
 \vec{x} vecteur anti-invariant $\iff f(\vec{x}) = -\vec{x} \iff f(\vec{x}) + \vec{x} = \vec{0}_E \iff (f + id_E)(\vec{x}) = \vec{0}_E \iff \vec{x} \in \ker(f + id_E)$

1 Homothéties

définition 2:

Soit $k \in \mathbb{K}$.

On appelle HOMOTHÉTIE DE RAPPORT k l'application linéaire $k.id_E$.

On la note souvent h_k

proposition 1 (les vérifications sont triviales)

L'ensemble des homothéties est:

- i. stable par la loi de composition
- ii. stable par addition et multiplication externe par un scalaire

démonstration 1

Soient k_1 et k_2 deux scalaires.

- $(k_1.id_E) \circ (k_2.id_E) = (k_1.k_2).id_E$
- $k_1.id_E + k_2.id_E = (k_1 + k_2).id_E$ $k_1.(k_2.id_E) = (k_1.k_2).id_E$

théorème 1: Seules les homoth'eties ont cette propriété!

Dans toute base B de E, la matrice de l'homothétie $k.id_E$ est $\mathrm{Mat}_B(k.id_E) = k.I_n = \begin{pmatrix} k \\ k.id_E \end{pmatrix}$

rem: on montrera également en exercice que les seuls endomorphismes de E qui commutent avec tout endomorphisme de E sont les homothéties.

exemple 1: très classique

Soit f un endomorphisme de E.

Si pour tout $\vec{x} \in E$, $(\vec{x}, f(\vec{x}))$ est une famille liée alors f est une homothétie.

$$\forall \vec{x} \in E, \exists \lambda \in \mathbb{K}, f(\vec{x}) = \lambda . \vec{x} \Longrightarrow \exists \lambda \in \mathbb{K}, \forall \vec{x} \in E, f(\vec{x}) = \lambda . \vec{x}$$

$\mathbf{2}$ Projections associées à une somme directe de 2 sev

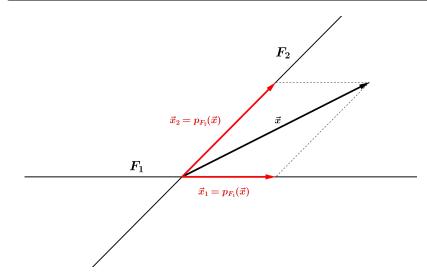
définition 3: projection

Soit $E = F_1 \oplus F_2$

LA PROJECTION VECTORIELLE SUR F_1 PARALLÈLLEMENT À F_2 est l'endomorphisme de E, noté p_{F_1} ,

$$\begin{array}{cccc}
p_{F_1} : E = F_1 \oplus F_2 & \longrightarrow & E \\
\vec{x} = \vec{x}_1 + \vec{x}_2 & \longmapsto & p_{F_1}(\vec{x}) = \vec{x}_1
\end{array}$$

- Rappel: $E = F_1 \oplus F_2$ signifie que $\forall \vec{x} \in E, \exists ! (\vec{x}_1, \vec{x}_2) \in F_1 \times F_2, \vec{x} = \vec{x}_1 + \vec{x}_2$
- " $p_{F_1}(\vec{x})$ est l'unique vecteur de F_1 tel que $\vec{x} p_{F_1}(\vec{x}) \in F_2$ "
- l'endomorphisme $id_E-p_{F_1}$ n'est rien autre que la projection sur F_2 parallèlement à F_1 : il se note p_{F_2} et s'appelle le projecteur associé à p_{F_1}
- ullet p $_{F_1}$ est l'application qui à tout vecteur associe sa composante sur F_1 lorsque l'on considère la $d\grave{e}composition\ F_1\oplus F_2=E$



remarque 1 (à propos des projecteurs associés)

On a
$$p_{F_1} + p_{F_2} = id_E$$
 et $p_{F_1} \circ p_{F_2} = p_{F_2} \circ p_{F_2} = 0$

0	$E = \mathbb{R}^2$	$F_1 = \{(x,0) x \in \mathbb{R}\}$	$F_2 = \{(0,y) y \in \mathbb{R}\}$	$(x,y) = \underbrace{(x,0)}_{\in F_1} + \underbrace{(0,y)}_{\in F_2}$
2	$E = \mathbb{R}^2$	$F_1 = \text{vect}((1, -1))$	$F_2 = \text{vect}((1,0))$	$(x,y) = \underbrace{(-y,y)}_{\in F_1} + \underbrace{(x+y,0)}_{\in F_2}$
8	$E = \mathbb{R}^3$	$F_1 = \{(x,y,0) (x,y) \in \mathbb{R}^2\}$	$F_2 = \{(0,0,z) z \in \mathbb{R}\}$	$(x,y,z) = \underbrace{(x,y,0)}_{\in F_1} + \underbrace{(0,0,z)}_{\in F_2}$
4	$E = \mathbb{R}_2[X]$	$F_1 = \text{vect}(X+1)$	$F_2 = \text{vect}(X^2, X)$	$aX^{2} + bX + c = \underbrace{c.(X+1)}_{\in F_{1}} + \underbrace{aX^{2} + (b-c)X}_{F_{2}}$

0	$p_{F_1}: E \longrightarrow E$ $(x,y) \longmapsto (x,0)$	$p_{F_2}: E \longrightarrow E$ $(x,y) \longmapsto (0,y)$
2	$p_{F_1}: E \longrightarrow E$ $(x,y) \longmapsto (-y,y)$	$p_{F_2}: E \longrightarrow E$ $(x,y) \longmapsto (x+y,0)$
8	$p_{F_1}: E \longrightarrow E$ $(x,y,z) \longmapsto (x,y,0)$	$p_{F_2}: E \longrightarrow E$ $(x,y,z) \longmapsto (0,0,z)$
4	$p_{F_1}: E \longrightarrow E$ $aX^2 + bX + c \longmapsto c.(X+1)$	$p_{F_2}: E \longrightarrow E$ $aX^2 + bX + c \longmapsto aX^2 + (b - c)X$

définition 4: projecteur

Soit p un endomorphisme de E.

On dit que p est un projecteur de E lorsque $p\circ p=p$ (càd $p^2=p$)

rojection c'héorème 2: noyau et image d'une projection

Soit p_{F_1} la projection sur F_1 parallèlement à F_2 (notations de la définition 3), on a :

- i.) $\ker p_{F_1} = F_2$
- ii.) Im $p_{F_1} = F_1 = \ker(p_{F_1} id_E)$
- iii.) p_{F_1} est un projecteur, càd $p_{F_1}^2 = p_{F_1}$
 - "le noyau est l'espace parallèlement auquel on projette"
 - "l'ensemble image est l'espace sur lequel on projette, c' est aussi l'ensemble des VECTEURS INVA-RIANTS $par p_{F_1}$ "

Éthéorème 3: un projecteur est une projection

Soit p un projecteur de E. (càd p est un endomorphisme de E vérifiant $p \circ p = p$) On a alors:

- i) $\operatorname{Im} p \oplus \ker p = E$
- ii) $\operatorname{Im} p = \ker(p id)$
- iii) p est LA projection sur Im $p = \ker(p id) = E_1(p)$ parallèlement à $\ker p = E_0(p)$ rem: on prouve dans la démonstration que

$$\forall \vec{x} \in E, \vec{x} = \underbrace{p(\vec{x})}_{\in \mathrm{Im}(p)} + \underbrace{(\vec{x} - p(\vec{x}))}_{\in \mathrm{ker}(p)}$$

remarque 2

Bref, projecteur et projection c'est la même chose; et on projette sur l'image parallèlement au noyau

remarque 3 (éléments propres d'un projecteur(lien avec la rèduction))

- les valeurs propres d'un projecteur sont 0 et 1
- $E_0(p_{F_1}) = \ker(p_{F_1})$ est l'espace parallèlement auquel on projette
- $E_1(p_{F_1}) = \operatorname{Im}(p_{F_1}) = \ker(p_{F_1} id_E)$ est l'espace sur lequel on projette
- Si E est de dimension finie, un projecteur de E est toujours diagonalisable

🎖 théorème 4: caractérisation matricielle d'un projecteur

Soit f un endomorphisme de E, avec dim $E = n < \infty$.

Il y a équivalence entre:

- i.) f est un projecteur
- ii.) il existe une base \mathcal{B} de E pour laquelle on a:

$$\operatorname{Mat}_{\mathcal{B}}(f) = \operatorname{diag}(\underbrace{1, \dots, 1}_{r}, \underbrace{0, \dots, 0}_{n-r})$$

et dans ce cas, on a alors $|\operatorname{tr} f = \operatorname{rg} f = r = \dim \ker (f - id_E)|$

A retenir: un endomorphisme est un projecteur ssi on peut lui associer une matrice diagonale avec des 0 et des 1 sur la diagonale

démonstration 2

Soit E un ev de dimension finie n et f un endomorphisme de E.

- Montrons que i) $\Rightarrow ii$)
 - On suppose que f est un projecteur.

On sait alors que Im f et ker f sont supplémentaires dans E, et que f est la projection sur Im f parallèlement à $\ker f$.

Considérons une base de E adaptée à la décomposition $\operatorname{Im} f \oplus \ker f$, c'est à dire obtenue par la concaténation d'une base de $\operatorname{Im} f$ et d'un base de $\operatorname{ker} f$.

Comme les vecteur de Im f sont des vecteurs invariants par f, on a bien la matrice de la projection dans cette base qui est $diag(\underbrace{1,\ldots,1}_r,\underbrace{0,\ldots,0}_{n-r})$ avec $r=\dim\operatorname{Im} f=\operatorname{rg} f$

• Montrons que ii) $\Rightarrow i$)

Montrons que ii) $\Rightarrow i$) On suppose qu'il existe une base $\mathcal B$ telle que $Mat_{\mathcal B}(f) = diag(\underbrace{1,\ldots,1}_r,\underbrace{0,\ldots,0}_{n-r})$

On a alors

$$Mat_{\mathcal{B}}(f^2) = (Mat_{\mathcal{B}}(f))^2 = (diag(\underbrace{1,\ldots,1}_r,\underbrace{0,\ldots,0}_{n-r}))^2 = diag(\underbrace{1^2,\ldots,1^2}_r,\underbrace{0^2,\ldots,0^2}_{n-r}) = diag(\underbrace{1,\ldots,1}_r,\underbrace{0,\ldots,0}_{n-r})$$

On trouve que $Mat_{\mathcal{B}}(f^2) = Mat_{\mathcal{B}}(f)$, ce qui permet d'affirmer que $f^2 = f$!

remarque 4 (cas d'un espace euclidien où F_1 et F_2 sont orthogonaux)

Lorsque F_1 et F_2 sont orthogonaux, on a des formules assez simples pour connaître l'expression du projetè orthogonal

• Si F_1 est une droite vectorielle dirigèe par le vecteur e_1 .

$$\forall x \in E, p_{F_1}(x) = \frac{\langle x, e_1 \rangle}{||e_1||^2}.e_1$$

• Si F_1 est un plan vectoriel dont (e_1,e_2) est une base orthogonale.

$$\forall x \in E, p_{F_1}(x) = \frac{\langle x, e_1 \rangle}{||e_1||^2} \cdot e_1 + \frac{\langle x, e_2 \rangle}{||e_2||^2} \cdot e_2$$

\cong exemple 2: Soit $E = \mathbb{R}^2$ muni de son produit scalaire usuel

Donner l'expression analytique de la projection orthogonale sur la droite F_1 dirigèe par le vecteur (3,4)Soit $\vec{x} = (x,y)$ et notons $\vec{d} = (3,4)$

D'après la formule précédente, on a

$$p_{F_1}(\vec{x}) = \frac{\langle \vec{x}, \vec{d} \rangle}{||\vec{d}||^2} \cdot \vec{d} = \frac{3x + 4y}{5} \cdot {3 \choose 4}$$

3 Symétries vectorielles

définition 5: automorphisme involutif

Soit f un endomorphisme de E.

On dit que f est UN AUTOMORPHISME INVOLUTIF DE E lorsque $f \circ f = id_E$ un automorphisme involutif est donc un automorphisme de E (endomorphisme bijectif) qui est égal à son propre inverse, càd $f^{-1} = f$

définition 6: symétrie vectorielle

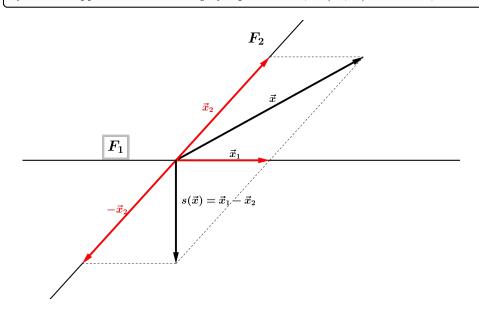
Soit $E = F_1 \oplus F_2$

LA SYMÉTRIE VECTORIELLE PAR RAPPORT À F_1 PARALLÈLLEMENT À F_2 est l'endomorphisme de E, noté s, défini par

$$s: E = F_1 \oplus F_2 \longrightarrow E$$

$$\vec{x} = \vec{x}_1 + \vec{x}_2 \longmapsto s(\vec{x}) = \vec{x}_1 - \vec{x}_2$$

• Rappel: $E = F_1 \oplus F_2$ signifie que $\forall \vec{x} \in E, \exists ! (\vec{x}_1, \vec{x}_2) \in F_1 \times F_2, \vec{x} = \vec{x}_1 + \vec{x}_2$



0	$E = \mathbb{R}^2$	$(x,y) = \underbrace{(x,0)}_{\in F_1} + \underbrace{(0,y)}_{\in F_2}$	$s: E \longrightarrow E \\ (x,y) \longmapsto (x,-y)$
2	$E = \mathbb{R}^2$	$(x,y) = \underbrace{(-y,y)}_{\in F_1} + \underbrace{(x+y,0)}_{\in F_2}$	$s: E \longrightarrow E \\ (x,y) \longmapsto (-x-2y,y)$
•	$E = \mathbb{R}^3$	$(x,y,z) = \underbrace{(x,y,0)}_{\in F_1} + \underbrace{(0,0,z)}_{\in F_2}$	$s: E \longrightarrow E \\ (x,y,z) \longmapsto (x,y,-z)$
•	$E = \mathbb{R}_2[X]$	$aX^{2} + bX + c = \underbrace{c.(X+1)}_{\in F_{1}} + \underbrace{aX^{2} + (b-c)X}_{F_{2}}$	$s: E \longrightarrow E$ $aX^{2} + bX + c \longmapsto -aX^{2} + (2c - b)X + c$

'éthéorème 5: propriétés d'une symétrie vectorielle

Soit s la symétrie vectorielle par rapport à F_1 parallèllement à F_2 (notations de la déf. 6), on a:

- i.) $\ker s = \{\vec{0}\}\$
- ii.) $\operatorname{Im} s = E$
- iii.) $s \circ s = id_E$
- iv.) F_1 est l'ensemble des VECTEURS INVARIANTS par s
- v.) F_2 est l'ensemble des VECTEURS ANTI-INVARIANTS par s

remarque 5 (lien entre projection et symétrie)

On a
$$s = 2.p_{F_1} - id_E$$

en effet, pour tout $x \in E$ on a

$$s(\vec{x}) = \vec{x}_1 - \vec{x}_2 = 2\vec{x}_1 - (\vec{x}_1 + \vec{x}_2) = 2p_{F_1}(\vec{x}) - \vec{x} = (2p_{F_1} - id_E)(x)$$

remarque 6 (cas des symètries orthogonales dans un espace euclidien)

Lorsque F_1 et F_2 sont orthogonaux, on parle de symètrie orthogonale par rapport à F_1 .

Il existe alors des formules plus simples pour ècrire l'expression analytique du symétrique orthogonal grâce aux produits scalaires

Éthéorème 6: un automorphisme involutif est une symétrie vectorielle

Soit f est un automorphisme involutif de E.(càd f est un endomorphisme de E tel que $f \circ f = id_E$)

On a alors:

- i) $\ker(f id_E) \oplus \ker(f + id_E) = E$
- ii) f est LA symétrie vectorielle par rapport à $\ker(f id_E) = E_1(f)$ parallèlement à $\ker(f + id_E) = E_{-1}(f)$

rem:

- $\bullet \ \ L'espace \ des \ vecteurs \ invariants \ et \ l'espace \ des \ vecteurs \ anti-invariants \ sont \ supplèmentaires \ dans \ E$
- Dans la démonstration on montre que

$$\forall \vec{x} \in E, \ \vec{x} = \underbrace{\frac{\vec{x} + f(\vec{x})}{2}}_{\in E_1(f)} + \underbrace{\frac{\vec{x} - f(\vec{x})}{2}}_{\in E_{-1}(f)}$$

remarque 7

Bref, on a montré que automorphisme involutif et symétrie vectorielle, c'est la même chose...

remarque 8 (éléments propres d'une symétrie vectorielle s, (lien avec la rèduction))

- les valeurs propres d'une symétrie sont -1 et 1
- $E_1(s)$ est l'espace par rapport auquel on effectue la symétrie
- \bullet $E_{-1}(s)$ est l'espace parallèlement auquel on effectue la symétrie
- \bullet Si E est de dimension finie, une symétrie est toujours diagonalisable

Éthéorème 7: caractérisation matricielle d'une symétrie vectorielle

Soit f un endomorphisme de E, avec $\dim E = n < \infty$. Il y a équivalence entre :

- i.) f est une symétrie vectorielle
- ii.) il existe une base \mathcal{B} de E pour laquelle on a: $\operatorname{Mat}_{\mathcal{B}} f = \operatorname{diag}(\underbrace{1,\ldots,1}_{p},\underbrace{-1,\ldots,-1}_{n-p})$

et dans ce cas on a alors: tr $f = \dim E_1 - \dim E_{-1}$ avec $p = \dim \ker(f - id_E)$ un endomorphisme est une symétrie vectorielle ssi on peut lui associer une matrice diagonale avec des 1 et des -1 sur la diagonale

Tableaux récapitulatifs

	projecteur	automorphisme involutif
définition	$p \circ p = p$	$s \circ s = id_E$
	$E = \ker(p - id_E) \oplus \ker(p)$	$E = \ker(s - id_E) \oplus \ker(s + id_E)$
valeurs propres	0,1	-1,1
	projection sur $\ker(p - id_E)$ parallèlement à $\ker(p)$	symétrie par rapport à $ker(s - id_E)$ parallèlement à $ker(s + id_E)$
	$Im(p) = \ker(p - id_E)$	Im(s) = E
matrice réduite		

	projection sur F_1 parallélement à F_2	symétrie par rapport à ${\cal F}_1$ parallèlement à ${\cal F}_2$
définition	$p_{F_1}: E = F_1 \oplus F_2 \longrightarrow E$ $\vec{x} = \vec{x}_1 + \vec{x}_2 \longmapsto p_{F_1}(\vec{x}) = \vec{x}_1$	$s: E = F_1 \oplus F_2 \longrightarrow E$ $\vec{x} = \vec{x}_1 + \vec{x}_2 \longmapsto s(\vec{x}) = \vec{x}_1 - \vec{x}_2$
	$F_1 = \ker(p - id_E) = E_1(p)$ $F_2 = \ker(p) = E_0(p)$	$F_1 = \ker(s - id_E) = E_1(s)$ $F_2 = \ker(s + id_E) = E_{-1}(s)$
valeurs propres	0,1	-1, 1

démonstration 3 (bel exemple de raisonnement par analyse synthèse)

Soit f un endomorphisme de E tel que $f^2 = f \circ f = id_E$ Nous noterons plus simplement $E_1 = \ker(f - id_E) = \{\vec{x} \in E | f(\vec{x}) = \vec{x}\}\ (\text{ENS. DES VECTEURS INVARIANTS})$ et $E_{-1} = \ker(f + id_E) = \{\vec{x} \in E | f(\vec{x}) = -\vec{x}\}$ (ENS. DES VECTEURS ANTI-INVARIANTS)

1. Montrons que $\ker(f - id_E) \oplus \ker(f + id_E) = E$

• Partie Analyse:

Soit \vec{x} un vecteur fixé quelconque de E

On suppose qu'il existe $(\vec{x}_1, \vec{x}_2) \in E_1 \times E_{-1}$ tel que $\vec{x} = \vec{x}_1 + \vec{x}_2$ (1)

On a alors $f(\vec{x}) = f(\vec{x}_1) + f(\vec{x}_2) = \vec{x}_1 - \vec{x}_2$ (2)

En faisant (1)+(2) on trouve que $\vec{x}_1 = \frac{\vec{x} + f(\vec{x})}{2}$ et en considérant (1)-(2) on trouve que $\vec{x}_1 = \frac{\vec{x} - f(\vec{x})}{2}$

On vient de prouver que: \underline{SI} la décomposition du vecteur \vec{x} existe comme somme d'un vecteur de E_1 et d'un vecteur de E_{-1} ALORS cette décomposition est unique et que l'on a forcément $(\vec{x}_1, \vec{x}_2) = \left(\frac{\vec{x} + f(\vec{x})}{2}, \frac{\vec{x} - f(\vec{x})}{2}\right)$

(REMARQUONS QU'À CE NIVEAU NOUS N'AVONS PAS UTILISÉ L'HYPOTHÈSE $f^2=id_E$ ET L'ON A PAS PROUVÉ QUE LA DÉCOMPOSITION EXISTAIT!)

• Partie Synthèse:

CETTE PARTIE CONSISTE À VÉRIFIER QUE LES CONDITIONS NÉCESSAIRES TROUVÉES CI-DESSUS SONT ÉGALEMENT SUFFISANTES.

Soit \vec{x} un vecteur fixé quelconque de E

On note
$$\vec{x}_1 = \frac{\vec{x} + f(\vec{x})}{2}$$
 et $\vec{x}_2 = \frac{\vec{x} - f(\vec{x})}{2}$

i) on a
$$\vec{x}_1 \in E_1$$
. En effet $f(\vec{x}_1) = f(\frac{\vec{x} + f(\vec{x})}{2}) = \frac{f(\vec{x}) + f^2(\vec{x})}{2}$.
Or $f^2 = id_E$ donc $\frac{f(\vec{x}) + f^2(\vec{x})}{2} = \frac{f(\vec{x}) + \vec{x}}{2} = \vec{x}_1$

ii) on a
$$\vec{x}_2 \in E_{-1}$$
. En effet, $f(\vec{x}_2) = f(\frac{\vec{x} - f(\vec{x})}{2}) = \frac{f(\vec{x}) - f^2(\vec{x})}{2} = \frac{f(\vec{x}) - \vec{x}}{2} = -\vec{x}_2$

iii) on a
$$\vec{x}_1 + \vec{x}_2 = \frac{\vec{x} + f(\vec{x})}{2} + \frac{\vec{x} - f(\vec{x})}{2} = \vec{x}$$

Ceci prouve que pour tout vecteur $\vec{x} \in E$ il existe (un unique) couple $(\vec{x}_1, \vec{x}_2) \in E_1 \times E_{-1}$ tel que $\vec{x} = \vec{x}_1 + \vec{x}_2$ (cqfd!)

- L'unicité, si la première partie analyse est bien rédigée, est prouvée dans cette dite partie. On peut aussi montrer que $E_1 \cap E_{-1} = \{\vec{0}\}\$ (ce n'est pas très compliqué)
- 2. Maintenant que l'on sait que E_1 et E_{-1} sont supplémentaires dans E, on peut considérer la symétrie vectorielle par rapport à E_1 parallèlement à E_{-1} , notons s cette symétrie.
 - On a donc $\forall \vec{x} \in E, \exists ! (\vec{x}_1, \vec{x}_2) \in E_1 \times E_{-1}, \vec{x} = \vec{x}_1 + \vec{x}_2 \text{ et alors } s(\vec{x}) = \vec{x}_1 \vec{x}_2$
 - ainsi $\forall \vec{x} \in E, s(\vec{x}) = \frac{\vec{x} + f(\vec{x})}{2} \frac{\vec{x} f(\vec{x})}{2} = f(\vec{x}).$

On vient de prouver que $\forall \vec{x} \in E, f(\vec{x}) = s(\vec{x}), c'$ est à dire que f = s.

f est donc bien la symétrie vectorielle par rapport à E_1 parallèlement à E_{-1}

définition 7: sous-espace propre, notation $E_{\lambda}(f)$

Soit f un endomorphisme de E et $\lambda \in \mathbb{K}$ une valeur propre.

On appelle sous-espace propre de f associé à λ , et on note $E_{\lambda}(f)$ le sev suivant

$$E_{\lambda}(f) = \ker(f - \lambda . id_E) = \{\vec{x} \in E \mid f(\vec{x}) - \lambda . \vec{x} = \vec{0}\} = \{\vec{x} \in E \mid f(\vec{x}) = \lambda . \vec{x}\}\$$

rem: on bien sûr aussi $E_{\lambda}(f) = \ker(\lambda . id_E - f)$