EXERCICES: SERIES ENTIERES 2

Premier exercice

Soit $(a_n)_{n\geqslant 0}$ la suite de réels définies par $a_0=a_1=1$ et pour tout $n\geqslant 1$ la relation

$$a_{n+1} = \frac{1}{2} \sum_{k=0}^{n} \binom{n}{k} .a_k .a_{n-k}$$

- 1. Calculer a_2 et a_3
- 2. Montrer que pour tout entier $n \ge 0$ on a $0 < a_n \le n!$
- 3. Justifier que la série entière $\sum_{n\geq 0} \frac{a_n}{n!} x^n$ possède un rayon R supérieur ou égal à un.
- 4. Pour $x \in]-R, +R[$ on note $S(x) = \sum_{n=0}^{\infty} \frac{a_n}{n!}.x^n$
 - (a) Montrer que pour tout $x \in]-R, +R[$, on a $S^2(x)=1+2$. $\sum_{n=1}^{\infty} \frac{a_{n+1}}{n!}.x^n$
 - (b) Montrer que pour tout $x \in]-R, +R[$, on a $S'(x) = \frac{1}{2}(1+S^2(x))$
 - (c) Pour tout $x \in]-R, +R[$, on pose $u(x)=\arctan(S(x))$. Déterminer u(x) puis S(x) pour tout $x \in]-R, +R[$
- 5. Justifier que $R \leqslant \frac{\pi}{2}$.

Second exercice

Pour tout $n \ge 0$ on note $a_n = \int_0^1 \frac{dt}{(2+t^2)^{n+1}}$ et on considère la série entière $\sum_{n\ge 0} a_n x^n$

- 1. Calculer a_0
- 2. Montrer que $\forall n \geqslant 0, 0 \leqslant a_n \leqslant \frac{1}{2^{n+1}}$
- 3. Justifier que le rayon de la série entière est supérieure ou égal à 2
- 4. Lorsque |x| < 2, on note $S_n(x)$ la somme partielle d'indice n de la série .

(a) Justifier que
$$S_n(x) = \int_0^1 \frac{dt}{2 - x + t^2} - \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{x}{2 + t^2}\right)^{n+1} dt$$

(b) On note
$$R_n(x) = \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{x}{2 + t^2}\right)^{n+1} dt$$
.

Montrer avec soin que $0 \le |R_n(x)| \le \left(\frac{|x|}{2}\right)^{n+1} \cdot \int_0^1 \frac{dt}{2-x+t^2}$

- (c) En déduire la somme S(x)
- 5. Justifier que R=2

CORRECTION

Premier exercice:

- 1. $a_2 = 1$ et $a_3 = 2$
- 2. Nous allons montrer le résultat demandé en effectuant une récurrence forte.

Pour tout $p \ge 0$ on note la proposition \mathcal{P}_p : " $0 < a_p \le p$!"

- Initialisation:

Il est clair que \mathcal{P}_0 est vraie (ainsi que $\mathcal{P}_1, \mathcal{P}_2$ et \mathcal{P}_3)

- **Hérédité:** Supposons la proposition \mathcal{P}_k vraie **jusqu' à** un rang $n \ge 1$ fixé quelconque. D'après cette supposition, on sait que $0 < a_k \le k!$ et $0 < a_{n-k} \le (n-k)!$ pour tout $k \in [0,n]$. On a donc l'encadrement

$$0 < a_{n+1} = \frac{1}{2} \sum_{k=0}^{n} \binom{n}{k} . a_k . a_{n-k} \leqslant \frac{1}{2} \sum_{k=0}^{n} \binom{n}{k} k! (n-k)! = \frac{1}{2} \sum_{k=0}^{n} n! = \frac{(n+1)!}{2} n! = \frac{(n+1)!}{2} \leqslant (n+1)!$$

Ce qui prouve que \mathcal{P}_{n+1} est vraie

- Conclusion:

Par le principe de récurrence, on a montré que $\forall n \ge 0, 0 \le a_n \le n!$

- 3. De la question précédente, on en déduit que $\left|\frac{a_n}{n!}\right| \leq 1$ ce qui nous permet d'affirmer par théorème
 - (8) que $Rayon(\sum \frac{a_n}{n!}) \geqslant Rayon(\sum x_n)$

Or on sait que $Rayon(\sum x_n) = 1$ (c'est une SE de référence!).

On a bien justifié que $Rayon(\sum \frac{a_n}{n!}) \geqslant 1$

4. (a) Pour établir cette formule nous allons réaliser le produit de Cauchy de la SE $\sum \frac{a_n}{n!}$ par ellemême.

Notons $\sum c_n x^n$ le produit de Cauchy de la série entière $\sum \frac{a_n}{n!}$ par elle-même.

Par définition, on a

$$\forall n \geqslant 0, c_n = \sum_{k=0}^n \frac{a_k}{k!} \cdot \frac{a_{n-k}}{(n-k)!}$$

ce qui donne ici

- i) pour n = 0: $c_0 = a_0^2 = 1$
- ii) pour $n \ge 1$: $c_n = \frac{1}{n!} \sum_{k=0}^n \frac{n!}{k!(n-k)!} a_k . a_{n-k} = \frac{1}{n!} \sum_{k=0}^n \binom{n}{k} . a_k . a_{n-k} = \frac{2.a_{n+1}}{n!}$

Par théorème on sait que

- i) $Rayon(\sum c_n x^n) \geqslant R$
- ii) pour tout x tel que $|x| < Rayon(\sum c_n x^n)$, on a

$$\sum_{n=0}^{\infty} c_n x^n = \left(\sum_{n=0}^{\infty} \frac{a_n}{n!} x^n\right) \cdot \left(\sum_{n=0}^{\infty} \frac{a_n}{n!} x^n\right) = S^2(x)$$

Et l'on a vu que

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + \sum_{n=1}^{\infty} c_n x^n = 1 + 2 \sum_{n=1}^{\infty} \frac{a_{n+1}}{n!} x^n$$

En résumé, on a bien prouvé que

$$\forall x \in]-R, +R[, S^2(x) = 1 + 2. \sum_{n=1}^{\infty} \frac{a_{n+1}}{n!}.x^n]$$

- (b) Le théorème de dérivation des séries entières nous permet d'affirmer que
 - i. $S \operatorname{est} C^{\infty} \operatorname{sur} \left[-R, +R \right]$
 - ii. S' est donné par dérivation terme à terme sur cet intervalle

Ainsi, pour $x \in]-R, +R[$ on a

$$S'(x) = \left(\sum_{n=0}^{\infty} \frac{a_n}{n!} x^n\right)' = \sum_{n=0}^{\infty} \left(\frac{a_n}{n!} \cdot x^n\right)' = \sum_{n=1}^{\infty} \frac{n \cdot a_n}{n!} \cdot x^{n-1} = \sum_{n=1}^{\infty} \frac{a_n}{(n-1)!} \cdot x^{n-1}$$

Un changement d'indice judicieux dans cette dernière somme permet de trouver

$$\forall x \in]-R, +R[, S'(x) = \sum_{n=0}^{\infty} \frac{a_{n+1}}{n!} . x^n = 1 + \sum_{n=1}^{\infty} \frac{a_{n+1}}{n!} . x^n$$

A l'aide des deux égalités encadrées ci-dessus, on aboutit bien

$$\forall x \in]-R, +R[, S'(x) = \frac{1}{2}(1+S^2(x))]$$

- (c) On définit $u:]-R, +R[\longrightarrow \mathbb{R}$

 - pour tout $x \in]-R, +R[$ on a

$$u'(x) = \frac{S'(x)}{1 + S^2(x)} = \frac{1}{2}$$

On peut donc affirmer qu'il existe une constante réelle C telle que

$$\forall x \in]-R, +R[, u(x) = \frac{x}{2} + C$$

Comme S(0) = 1, on a $C = u(0) = \arctan(S(0)) = \frac{\pi}{4}$ ainsi

$$\forall x \in]-R, +R[, u(x) = \frac{x}{2} + \frac{\pi}{4}$$

Réfléchissons un instant à ce que nous venons de prouver, à savoir

$$\forall x \in]-R, +R[, \arctan(S(x)) = \frac{x}{2} + \frac{\pi}{4}$$

- i. Comme la fonction arctan est à valeurs dans $]-\frac{\pi}{2},\frac{\pi}{2}[$, ceci implique que pour tout $x \in]-R, +R[$ on a forcément $\frac{x}{2} + \frac{\pi}{4} \in]-\frac{\pi}{2}, \frac{\pi}{2}[$
- ii. Dire que pour tout x < R on a $\frac{x}{2} + \frac{\pi}{4} < \frac{\pi}{2}$, implique que $\frac{R}{2} + \frac{\pi}{4} \leqslant \frac{\pi}{2}$ càd $R \leqslant \frac{\pi}{2}$

- iii. Dire que pour tout -R < x on a $-\frac{\pi}{2} < \frac{x}{2} + \frac{\pi}{4}$, implique que $-\frac{\pi}{2} \leqslant \frac{-R}{2} + \frac{\pi}{4}$ càd $R \leqslant \frac{3\pi}{2}$
- iv. On vient donc de justifier ici que $R \leqslant \frac{\pi}{2}$! (ce qui rend la dernière question caduc!)
- En composant par la fonction tan cela donne

$$\forall x \in]-R, +R[, S(x) = \tan\left(\frac{x}{2} + \frac{\pi}{4}\right)]$$

Deuxième exercice:

On pose pour tout *n* entier $a_n = \int_0^1 \frac{dt}{(2+t^2)^{n+1}}$

1.
$$a_0 = \int_0^1 \frac{dt}{2+t^2} = \frac{1}{2} \int_0^1 \frac{dt}{1+\left(\frac{t}{\sqrt{2}}\right)^2} = \frac{1}{\sqrt{2}} \int_0^1 \frac{\frac{dt}{\sqrt{2}}}{1+\left(\frac{t}{\sqrt{2}}\right)^2} = \frac{1}{\sqrt{2}} \left[\arctan\left(\frac{t}{\sqrt{2}}\right)\right]_0^1 = \frac{1}{\sqrt{2}} \cdot \arctan\frac{1}{\sqrt{2}}$$

2. Soit $n \ge 0$.

Pour tout $t \in [0,1]$ on a

$$0 \leqslant \frac{1}{(2+t^2)^{n+1}} \leqslant \frac{1}{2^{n+1}}$$

Par croissance de l'intégrale, on en déduit que

$$\int_0^1 0dt \leqslant \int_0^1 \frac{dt}{(2+t^2)^{n+1}} \leqslant \int_0^1 \frac{1}{2^{n+1}} dt$$

c'est à dire

$$\boxed{0 \leqslant a_n \leqslant \frac{1}{2^{n+1}}}$$

- 3. Ici, on propose deux solutions!
 - i) Pour tout $r \in [0,2]$, on a

$$0 \leqslant a^n r^n \leqslant \frac{1}{2} \frac{r^n}{2^n} \leqslant \frac{1}{2}$$

Ainsi la suite $(|a_n|r^n)_n$ est majorée pour tout $r \in [0,2]$, on en déduit **par définition du rayon** que $R \ge 2$

ii) On utilise le théorème 8.

Pour tout n on a

$$|a_n| \leqslant \frac{1}{2^n + 1}$$

On peut donc affirmer que

$$Rayon(\sum a_n x^n) \geqslant Rayon(\sum \frac{x^n}{2^{n+1}})$$

Or la série $\sum \frac{x^n}{2^{n+1}}$ est une série géométrique de raison $\frac{x}{2}$ qui a donc son rayon égal à 2. On retrouve bien $Rayon(\sum a_n x^n) \ge 2$

- 4. Soit x un réel tel que |x| < 2, et n un entier positif. Notons $S_n(x) = \sum_{k=0}^n a_k x^k$.
 - (a) Grâce à la linéarité de l'intégrale, on a

$$S_n(x) = \sum_{k=0}^n \left(\int_0^1 \frac{dt}{(2+t^2)^{n+1}} x^n \right) = \int_0^1 \sum_{k=0}^n \frac{dt}{(2+t^2)^{n+1}} x^n$$

- En reconnaissant une somme géométrique:

$$\sum_{k=0}^{n} \frac{x^{k}}{(2+t^{2})^{k+1}} = \frac{1}{2+t^{2}} \sum_{k=0}^{n} \frac{x^{k}}{(2+t^{2})^{k}} = \frac{1}{2+t^{2}} \cdot \frac{1 - \left(\frac{x}{2+t^{2}}\right)^{n+1}}{1 - \frac{x}{2+t^{2}}} = \frac{1}{2-x+t^{2}} \left(1 - \left(\frac{x}{2+t^{2}}\right)^{n+1}\right)^{n+1} = \frac{1}{2-x+t^{2}} \left(1 - \left(\frac{x}{2+t^{2}$$

Cela nous donne

$$S_n(x) = \int_0^1 \frac{1}{2 - x + t^2} - \frac{1}{2 - x + t^2} \left(\frac{x}{2 + t^2}\right)^{n+1} dt = \int_0^1 \frac{dt}{2 - x + t^2} - \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{x}{2 + t^2}\right)^{n+1} dt = \int_0^1 \frac{dt}{2 - x + t^2} - \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{x}{2 + t^2}\right)^{n+1} dt = \int_0^1 \frac{dt}{2 - x + t^2} - \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{x}{2 + t^2}\right)^{n+1} dt = \int_0^1 \frac{dt}{2 - x + t^2} - \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{x}{2 + t^2}\right)^{n+1} dt = \int_0^1 \frac{dt}{2 - x + t^2} - \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{x}{2 + t^2}\right)^{n+1} dt = \int_0^1 \frac{dt}{2 - x + t^2} - \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{x}{2 + t^2}\right)^{n+1} dt = \int_0^1 \frac{dt}{2 - x + t^2} - \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{x}{2 + t^2}\right)^{n+1} dt = \int_0^1 \frac{dt}{2 - x + t^2} - \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{x}{2 + t^2}\right)^{n+1} dt = \int_0^1 \frac{dt}{2 - x + t^2} - \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{x}{2 + t^2}\right)^{n+1} dt = \int_0^1 \frac{dt}{2 - x + t^2} - \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{x}{2 + t^2}\right)^{n+1} dt = \int_0^1 \frac{dt}{2 - x + t^2} - \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{x}{2 + t^2}\right)^{n+1} dt = \int_0^1 \frac{dt}{2 - x + t^2} - \int_0^1 \frac{dt}{2 - x + t^2} dt = \int_0^1 \frac{dt}{2 - x + t^2} - \int_0^1 \frac{dt}{2 - x + t^2} dt = \int_0^1 \frac{dt}{2 - x + t^2} - \int_0^1 \frac{dt}{2 - x + t^2} dt = \int_0^1 \frac{dt}{2 - x + t^2} - \int_0^1 \frac{dt}{2 - x + t^2} dt = \int_0^1 \frac{dt}{2$$

(b) En notant $R_n(x) = \int_0^1 \frac{1}{2-x+t^2} \left(\frac{x}{2+t^2}\right)^{n+1} dt$ l'égalité précédente s'écrit

$$S_n(x) = \int_0^1 \frac{dt}{2 - x + t^2} - R_n(x) \quad (*)$$

Dans la suite nous allons calculer cette première intégrale et montrer que $\lim_{n\to+\infty} R_n(x) = 0$

Pour x tel que |x| < 2 on a 2 - x > 0, on a donc

$$\int_{0}^{1} \frac{dt}{2 - x + t^{2}} = \int_{0}^{1} \frac{dt}{(\sqrt{2 - x})^{2} + t^{2}}$$

$$= \frac{1}{\sqrt{2 - x}} \int_{0}^{1} \frac{\frac{1}{\sqrt{2 - x}}}{1 + \left(\frac{t}{\sqrt{2 - x}}\right)^{2}} dt$$

$$= \frac{1}{\sqrt{2 - x}} \left[\arctan\left(\frac{t}{\sqrt{2 - x}}\right)\right]_{0}^{1}$$

On trouve donc

$$\int_0^1 \frac{dt}{2 - x + t^2} = \frac{1}{\sqrt{2 - x}} \arctan\left(\frac{1}{\sqrt{2 - x}}\right)$$

– On s'intéresse à $R_n(x)$.

A l'aide d'un encadrement on va montrer que $\lim_{n\to+\infty} R_n(x) = 0$.

Il se serait tentant d'écrire que:

Pour tout
$$t \in [0,1]$$
 on a $0 \le \frac{1}{2-x+t^2} \left(\frac{x}{2+t^2}\right)^{n+1} \le \frac{1}{2-x+t^2} \left(\frac{x}{2}\right)^{n+1}$

Mais ceci est faux lorsque n pair et x < 0!

Nous allons donc nécessairement avoir recours à des valeurs absolues.

Pour tout $t \in [0,1]$ on a

$$0 \leqslant \left(\frac{|x|}{2+t^2}\right)^{n+1} \leqslant \left(\frac{|x|}{2}\right)^{n+1}$$

Et donc en multipliant par la quantité positive $\frac{1}{2-x+t^2}$ chaque membre on obtient:

$$0 \leqslant \frac{1}{2 - x + t^2} \left(\frac{|x|}{2 + t^2} \right)^{n+1} \leqslant \frac{1}{2 - x + t^2} \left(\frac{|x|}{2} \right)^{n+1}$$

Ce qui donne par croissance de l'intégrale

$$0 \leqslant \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{|x|}{2 + t^2} \right)^{n+1} dt \leqslant \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{|x|}{2} \right)^{n+1} dt = \left(\frac{|x|}{2} \right)^{n+1} \cdot \int_0^1 \frac{dt}{2 - x + t^2} dt$$

Dans le cours d'intégration de première année on a vu que pour une fonction f continue sur un segment [a,b] on a $\left| \int_a^b f \right| \leqslant \int_a^b |f|$ On peut donc ici appliquer ce résultat pour écrire que

$$\left| \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{|x|}{2 + t^2} \right)^{n+1} dt \right| \leqslant \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{|x|}{2 + t^2} \right)^{n+1} dt$$

Par transitivité on obtient que

$$0 \leqslant |R_n(x)| \leqslant \left| \int_0^1 \frac{1}{2 - x + t^2} \left(\frac{|x|}{2 + t^2} \right)^{n+1} dt \right| \leqslant \left(\frac{|x|}{2} \right)^{n+1} \cdot \int_0^1 \frac{dt}{2 - x + t^2}$$

Comme $\int_0^1 \frac{dt}{2-x+t^2}$ est une constante indépendante de n et que $\lim_{n\to+\infty} \left(\frac{x}{2}\right)^{n+1} = 0$ (car |x| < 2 et donc $\frac{|x|}{2} < 1$) on peut affirmer d'après <u>le théorème de convergence par encadrement</u> que $\lim_{n\to+\infty} R_n(x) = 0$

- En reprenant (*), on en déduit que $\left|\lim_{n\to+\infty}S_n(x)\right| = \int_0^1 \frac{dt}{2-x+t^2}$
- 5. A la question précédente on a montré que $\forall x \in]-2, +2[, S(x) = \frac{1}{\sqrt{2-x}}\arctan\left(\frac{1}{\sqrt{2-x}}\right)]$

Ici, il ne vaudrait pas dire que la fonction $x \mapsto \frac{1}{\sqrt{2-x}} \arctan\left(\frac{1}{\sqrt{2-x}}\right)$ n'étant pas définie pour x=2 on en déduit que R=2!

En effet, la formule précédente a été établie pour $x \in]-2,2[$ et donc on ne peut s'en servir pour des valeurs hors de cet intervalle!

On sait déjà que $R \geqslant 2$.

Nous allons montrer par l'absurde que R=2.

Pour cela on suppose R > 2.

Si R > 2, on sait par théorème que la fonction somme S est continue sur]-R, +R[, elle serait donc nécessairement continue en 2. On devrait avoir ainsi $\lim_{x\to 2^-} S(x) = S(2)$ (valeur finie).

Or
$$\lim_{x\to 2^-} S(x) = \lim_{x\to 2^-} \frac{1}{\sqrt{2-x}} \arctan\left(\frac{1}{\sqrt{2-x}}\right) = +\infty$$
 (Contradiction.) Conclusion: $R=2$